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Tuning Model Predictive Controllers

» MPC quadratic cost function:

N—-1
Vi = Z (XLiQXin + u;l(—“Ruk“) + XZ‘NPXHN
i=0

» The positive definite matrices Q, P, R are tuning variables.
» Non-trivial relationship with closed-loop trajectory.

» Tuning MPC for performance can be non-intuitive and
time-consuming.



Diesel Air-Path

> Application focus: Automotive diesel engine air-path

> With Toyota Japan
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Offline Tuning

» Limited budget for controller testing/tuning on physical plant.

» However, can tune controllers offline in simulation beforehand.

Test Online

Tune Offline

» Algorithms for online MPC tuning successfully demonstrated.!

> Want controllers tuned offline to be good initial points

YIFAC 2020 (Maass, Manzie, Shames, Chin, Ulapane, Nesi¢, Nakada)



Other Contributions
Machine Learning Tuning Framework
Preference Learning
Active Learning



Machine Learning Tuning Framework

» Human preferences & trade-offs important in tuning

» Want to replicate preferences in automated offline tuning
» Not easy to write a function describing human preferences
> Proposed framework? :

Closed-loop trajectories Learn from data

EGR rate

Feature extractor —

Neural
Network
T —— ] Time-domain characteristics

(overshoot, settling time, etc.)

F(P,Q,R) € [0,1]

| Optimiser (gradient-free) [

» Learn mapping from time-domain characteristics to scalar
performance index.

» Numeric rating data provided by human experts.

2|CARCV 2018 (Ira, Shames, Manzie, Chin, Nesi¢, Nakada, Sano)



Isotonic Preference Learning from Pairwise Comparisons

» Potential problems with numeric rating labels

» e.g. scale can ‘drift’ over time
» Idea: to solicit pairwise comparisons from experts

Which trajectory do you prefer?
AA /\ A
(VAR

» Data comprises pairs of features (x,x’), and binary labels
indicating which is preferred.
> Some features may be desirable
» e.g. faster settling time better, all else unchanged.
» Want monotonicity constraints on particular features (i.e.
isotonic regression).
» Proposed approach from pairwise comparison data using
Gaussian process regression.’

3CDC 2018 (Chin, Manzie, Ira, Nesi¢, Shames)



Active Learning for LPV System Identification

» Linear Parameter Varying model suitable for diesel air-path

> Want to identify LPV model by conducting as few experiments
as possible

» Active learning approach proposed using Gaussian process
regression
» Conducts next experiment where there is the most uncertainty

High g Low N. High g

Wiel Wiuel

> Also used to quantify model uncertainty

*IFAC 2020 (Chin, Maass, Ulapane, Manzie, Shames, Nesi¢, Rowe, Nakada)



Ordinal Optimisation
Lower Bound



Ordinal Optimisation and Randomised Algorithms

» Finding approximate solutions to difficult design problems,
under uncertainty.

» OO: from Discrete Event Dynamic Systems literature
» RA: from Probabilistic Robust Control literature

» Similar philosophy - simulate many random designs and pick
the best

» Goal softening to control degree of suboptimality

» Research goal: obtain bound on performance of a controller
tuned offline when tested online on a realised plant online.



Ordinal Optimisation Thought Experiment

» 100 job candidates, each with quality drawn i.i.d. N (0,1)

> Interview each candidate, but quality observed with another
i.i.d. N (0,1) perturbation.

o 1 20 30 4 S50 6 70 8 %0 100 [ 10 20 30 40 50 60 70 8 % 100

» Hire the best 5 observed candidates.

» Of the selected 5, what is the probability that at least one of
the hirees is in the top 5% of the N (0, 1) population?




Formalising the Problem

» li.d. sample of size n of:

Z = X 4+ Y
~—~— ~—~— —~—
observation ~N(0,1) ~N(0,£2)

(signal) (noise)

» Select the best m observed:

Z1:n S ZZ:n S U S Zm:n
N~~~ N~

=X+ Y =X(m)+Y(m)

» Success probability:

success \ /1, T, &, =P [ Xi < :c
p (n,m,a, €) r (ie{rllﬂ’.|r1,m} iy <X )

» where a > 0 is the 100a percentile of the distribution of X



Key Observations

Z1:n S Z2:n S Tt S Zm:n
~~ ——
=Xuy+Ya) =X(my+Y(m)

Psuccess (1, m, &, §) = Pr (iE{T.i.r.],m} X<i) < Xz‘)
» What really matters is the joint distribution of (Z, X)

» If each of Z and X are transformed by a strictly increasing
function, Psuccess is unchanged

» Can generalise (Z, X) to the class of continuous distributions
with a bivariate Gaussian copula



» Copula: a multivariate distribution with Uniform (0, 1)
marginals

» Decouples dependence within a multivariate distribution from
its marginals
» Any distribution can be fully represented by its marginals and a
copula
» e.g. to sample from a bivariate distribution, first sample from

the copula:
(U1, Ua)

then generate marginals using inverse probability integral
transform:

(Ft (W), FyH (W)

» Sklar’'s theorem: for continuous distributions, the copula is
unique



Gaussian Copula
> Let
Z 1 p
(ol 1)

» Then the bivariate Gaussian copula with correlation p is the
distribution of:

(®(2),®(X))

where @ is the standard Gaussian CDF
p=03

Figure: Bivariate Gaussian copula density



Gaussian Copula OO Success Probability

» Suppose (Z, X) has a continuous distribution with a bivariate
Gaussian copula and correlation p > 0

» Select the best m observed:

Z1:n S Z2:n S e S Zm:n
N~ ——’
hidden Xy hidden X

» Success probability:

pﬁl’l’ccess (n,m,a, p) = Pr <iE{T.i.r.],m} X(/') < X:‘>

» Equivalence to Gaussian additive noise success probability,
with p = (1+¢2) /2



Properties of Success Probability

1. (Monotonicity) pX....c (n, m, a, p) is non-decreasing in each of
n,m o, p
2. (High probability) For any é € (0, 1], can find sufficiently large
n so that
o (”;m;a;P)Zl—fs

psuccess

3. (Convergence to 1)

; N —
nlngo Psuccess (n7 m, &, p) =1



An Analytic Lower Bound

» For any w € (0,7/2), let

1 w cotw
Cl =7 — — Cy =
2 7 T — 2w
log (ncr) 5 —log log 2
fn = —| ——, o=
@ 2¢; (log (nc1) — loglog 2)

» Then 3n* (w) € Ns.t. Vn > n* (w):

o~ (a) — pus
Phccess (1, m @, p) > ©
V1= 9+ p0;

» Optimised bound w.r.t. w

N O~ () — pn

Psuccess (I'I, m7a7p) > sup )
we(0,7/2):n>n*(w) 1— p2 + P20'r27




Properties and Lower Bound lllustrated

Success Probability

Success Probability

m=1,p=0.5 a=0.05

—— Lower Bound
Monte-Carlo
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Inversion of Lower Bound

» The lower bound

o1 -
N (n,m,a, p) = sup ® (@) = pitn
Bsuccess L
w€(0,m/2):n>n*(w) 1 — ,02 + ,020'%

can be inverted

» For given m, a, p and § € (0,1], find an 71 s.t.
Phiccess (M My, p) > 16, Yn>7
» E.g. withd =0.01, m=1, a=0.01, p=0.9,
n=16744
> E.g. withd =0.01, m=1, & = 0.01, p = 0.01,

il a2 8.144 x 1047007



Non-Gaussian Copula OO Success Probability

» What if (Z, X) is a non-Gaussian copula, but still has ‘positive
dependence’?

» Denote success probability plccess (7, M, @)

» Properties:

1. Computed via m-dimensional integral
2. Non-decreasing in each of n, m, «
3. General bounds

1- (1 - a)m S péuccess (nv m, a) S 1- (1 - a)n
4. In general,

|Im p;uccess (n’ m’ a) # 1
n—oo



Associated Gaussian Copula

» (Z,X) is an arbitrary copula with positive Kendall correlation:
k=T [sign (Z — Z) sign (X - X)] >0
where (Z,X) is an independent copy of (Z, X)
» Let (Z,X') be the associated Gaussian copula with
p =sin(mk/2)
» If (Z,X) is not ‘too far’ from its associated Gaussian copula:

sup {Pr(X'<x|Z=2)-Pr(X<x|Z=2)}<v
(2x)€(0,1)?

then

N
péuccess (n7 m, a) Z Psuccess (n7 m, &, ,0) -V



Sequential Learning Algorithm for Probabilistically Robust
Controller Tuning
Numerical Example



Offline Controller Tuning Setup

» Controller parameter § € ©

» Candiates drawn from distribution Py
» Plant parameter ¢y € W

» Uncertainty with distribution Py

» Controller performance function (measurable) :
J(®):© =R
» System performance function (measurable) :

J(%,0): V¥ x 0 = R

» Induces a joint distribution for (7(6) : J(1/),9)>



OO for Controller Tuning

» Draw ni.id. candidates §; ~ Py, i=1,...,n

» Tuned controller is best offline performer:

6* = argmin J(6))
9;6{91,...,9,,}

» Independently realise a plant 9* ~ Py and test online:
J (7, 6%)
» Probability of meeting performance specification J*
Pry« g+ (J (¥, 67) < J7)

» Appeal to OO success probability with n samples, m =1, and
o = Pry. o (J(4",0;) < J7)



Sequential Learning for Controller Tuning

» In practice, copula of ( 6),J (v, 9)) and o unknown.

» Need to estimate a, and p of the associated Gaussian copula

» Assumptions:

(J(8),J(¥,6)) has unknown continuous distribution with

‘positive dependence’ (k > 0)

2. Copula is not ‘too far’ from associated Gaussian copula (with
)

3. Performance specification J* is ‘feasible’

4. Allowed to draw samples from Py, Py and evaluate J, J

—

» Result: sequential learning algorithm that stops after 7
samples, finds a controller 6% such that

Pry« o (J(4%,67) < J) > 1 -7

for any given v € (v, 1].



Lower Confidence Bound for Success Probability

» Given i.i.d. sample of (7(9),J(¢,0))

» Obtain finite-sample lower confidence bounds for a and p:
Prla>a,)>1—-p
Pr(p>gn) >1- B

» Combine with monotonicity properties and lower bound:

Pr (Psuccess (n, m, a) > Bﬁccess (n’ 1’Q”’En) a V)
>1-p1—p



Sequential Learning Algorithm

» Algorithm settings B; € (0,1], B2 € (0,1], 6 € (0,1]
[ Start ]%[ Draw & evaluate new controller, plant pair J

Y

[ Compute 1, Bo-lower confidence bounds

No

Y

—success

(n7 1’@”’En) Z 147

[ Return best performing controller 85 ]

» With settings d + B1 + Bo = — v, then

Pryegr (J(9%,65) < J*)>1-6—p1—Po—v
=1—1



Algorithm Stopping Time

» Algorithm stops after drawing a random number of samples 7

» Stopping time 7 is almost surely finite:
Pr(r<n)>1-0 (e_A”>

with some constant A > 0

» Bound can be computed more precisely:

5=0.1,8,=0.05,B,=0.05a=0.1,0=0.8

—— Lower Bound
—— Monte-Carlo




Numerical Example: MPC for Diesel Air-Path

» Step reference for output

Yy = (Pim, YEGR)
using inputs
u = (Uthr, UEGR, UVGT)
» 4 states, with state and input constraints
» Py: Gaussian perturbations to elements of nominal model

(A.B)
A=A+Sxp
B:§+SB

> P,: Spectral decomposition to generate random positive
definite matrices

Q = WqDqW¢q



Algorithm Results

» Performance specification: J* = 6.5 seconds for settling time
of yecr
» J evaluated using nominal model

» Single algorithm run with 1 — v = 0.7 stopped after
T = 37144 samples
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Tuning Results

» Test single tuned controller 8% on ‘fleet’ of 10,000
independently generated plants

» All 10,000 tests met performance specification
» Similar results for multiple algorithm runs

» Possible sources of conservativeness:

» Inherent in lower confidence bounds
» Actual copula may be more favourable to success probabiltiy
than associated Gaussian



Further Work

Physical experiments in combination with online tuning

Testing other classes of controllers

Lower bound that includes m

>

>

» Principles of choosing Py

>

» When distribution of (j (0),J(1/),9)) is not continuous
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