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Tuning Model Predictive Controllers

I MPC quadratic cost function:

Vk =
N�1X
i=0

�
x>kjiQxkji + u>kjiRukji

�
+ x>kjNPxkjN

I The positive de�nite matrices Q, P, R are tuning variables.
I Non-trivial relationship with closed-loop trajectory.

I Tuning MPC for performance can be non-intuitive and
time-consuming.
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Diesel Air-Path

I Application focus: Automotive diesel engine air-path

I With Toyota Japan
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O�ine Tuning

I Limited budget for controller testing/tuning on physical plant.

I However, can tune controllers o�ine in simulation beforehand.

Tune Offline

Test Online

I Algorithms for online MPC tuning successfully demonstrated.1

I Want controllers tuned o�ine to be good initial points

1IFAC 2020 (Maass, Manzie, Shames, Chin, Ulapane, Ne²i¢, Nakada)



6/34

Outline

Introduction

Other Contributions
Machine Learning Tuning Framework
Preference Learning
Active Learning

Ordinal Optimisation
Lower Bound

Sequential Learning Algorithm for Probabilistically Robust
Controller Tuning

Numerical Example

Further Work



7/34

Machine Learning Tuning Framework

I Human preferences & trade-o�s important in tuning

I Want to replicate preferences in automated o�ine tuning

I Not easy to write a function describing human preferences

I Proposed framework2 :

I Learn mapping from time-domain characteristics to scalar
performance index.
I Numeric rating data provided by human experts.

2ICARCV 2018 (Ira, Shames, Manzie, Chin, Ne²i¢, Nakada, Sano)
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Isotonic Preference Learning from Pairwise Comparisons

I Potential problems with numeric rating labels
I e.g. scale can `drift' over time
I Idea: to solicit pairwise comparisons from experts

Which trajectory do you prefer?

I Data comprises pairs of features (x; x0), and binary labels
indicating which is preferred.

I Some features may be desirable
I e.g. faster settling time better, all else unchanged.
I Want monotonicity constraints on particular features (i.e.

isotonic regression).

I Proposed approach from pairwise comparison data using
Gaussian process regression.3

3CDC 2018 (Chin, Manzie, Ira, Ne²i¢, Shames)
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Active Learning for LPV System Identi�cation

I Linear Parameter Varying model suitable for diesel air-path

I Want to identify LPV model by conducting as few experiments
as possible

I Active learning approach proposed using Gaussian process
regression 4

I Conducts next experiment where there is the most uncertainty

I Also used to quantify model uncertainty

4IFAC 2020 (Chin, Maass, Ulapane, Manzie, Shames, Ne²i¢, Rowe, Nakada)
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Ordinal Optimisation and Randomised Algorithms

I Finding approximate solutions to di�cult design problems,
under uncertainty.
I OO: from Discrete Event Dynamic Systems literature
I RA: from Probabilistic Robust Control literature

I Similar philosophy - simulate many random designs and pick
the best

I Goal softening to control degree of suboptimality

I Research goal: obtain bound on performance of a controller
tuned o�ine when tested online on a realised plant online.
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Ordinal Optimisation Thought Experiment

I 100 job candidates, each with quality drawn i.i.d. N (0; 1)

I Interview each candidate, but quality observed with another
i.i.d. N (0; 1) perturbation.

I Hire the best 5 observed candidates.

I Of the selected 5, what is the probability that at least one of
the hirees is in the top 5% of the N (0; 1) population?

0.1 0.5 0.9
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Formalising the Problem

I I.i.d. sample of size n of:

Z|{z}
observation

= X|{z}
�N (0;1)
(signal)

+ Y|{z}
�N(0;�2)
(noise)

I Select the best m observed:

Z1:n|{z}
=Xh1i+Yh1i

� Z2:n � � � � � Zm:n| {z }
=Xhmi+Yhmi

I Success probability:

psuccess (n;m; �; �) = Pr

 
min

i2f1;:::;mg
Xhii � x��

!

I where � > 0 is the 100� percentile of the distribution of X
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Key Observations

Z1:n|{z}
=Xh1i+Yh1i

� Z2:n � � � � � Zm:n| {z }
=Xhmi+Yhmi

psuccess (n;m; �; �) = Pr

 
min

i2f1;:::;mg
Xhii � x��

!

I What really matters is the joint distribution of (Z ;X )

I If each of Z and X are transformed by a strictly increasing
function, psuccess is unchanged

I Can generalise (Z ;X ) to the class of continuous distributions
with a bivariate Gaussian copula
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Copulas

I Copula: a multivariate distribution with Uniform (0; 1)
marginals

I Decouples dependence within a multivariate distribution from
its marginals

I Any distribution can be fully represented by its marginals and a
copula
I e.g. to sample from a bivariate distribution, �rst sample from

the copula:
(U1;U2)

then generate marginals using inverse probability integral
transform: �

F�1
1

(U1) ;F�1
2

(U2)
�

I Sklar's theorem: for continuous distributions, the copula is
unique
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Gaussian Copula

I Let "
Z
X

#
� N

 
0;

"
1 �
� 1

#!
I Then the bivariate Gaussian copula with correlation � is the

distribution of:
(Φ (Z ) ;Φ (X ))

where Φ is the standard Gaussian CDF

Figure: Bivariate Gaussian copula density
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Gaussian Copula OO Success Probability

I Suppose (Z ;X ) has a continuous distribution with a bivariate
Gaussian copula and correlation � > 0

I Select the best m observed:

Z1:n|{z}
hidden Xh1i

� Z2:n � � � � � Zm:n| {z }
hidden Xhmi

I Success probability:

pNsuccess (n;m; �; �) = Pr

 
min

i2f1;:::;mg
Xhii � x��

!

I Equivalence to Gaussian additive noise success probability,

with � =
�
1 + �2

��1=2
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Properties of Success Probability

1. (Monotonicity) pNsuccess (n;m; �; �) is non-decreasing in each of
n, m, �, �

2. (High probability) For any � 2 (0; 1], can �nd su�ciently large
n so that

pNsuccess (n;m; �; �) � 1� �

3. (Convergence to 1)

lim
n!1

pNsuccess (n;m; �; �) = 1
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An Analytic Lower Bound

I For any ! 2 (0; �=2), let

c1 :=
1

2
�
!

�
; c2 :=

cot!

� � 2!

�n := �

s
log (nc1)

c2
; �2n :=

� log log 2

2c2 (log (nc1)� log log 2)

I Then 9n� (!) 2 N s.t. 8n � n� (!):

pNsuccess (n;m; �; �) � Φ

0@ Φ�1 (�)� ��nq
1� �2 + �2�2n

1A
I Optimised bound w.r.t. !

pNsuccess (n;m; �; �) � sup
!2(0;�=2):n�n�(!)

Φ

0@ Φ�1 (�)� ��nq
1� �2 + �2�2n

1A
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Properties and Lower Bound Illustrated
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Inversion of Lower Bound

I The lower bound

pN
success

(n;m; �; �) := sup
!2(0;�=2):n�n�(!)

Φ

0@ Φ�1 (�)� ��nq
1� �2 + �2�2n

1A
can be inverted

I For given m, �, � and � 2 (0; 1], �nd an n̄ s.t.

pNsuccess (n;m; �; �) � 1� �; 8n � n̄

I E.g. with � = 0:01, m = 1, � = 0:01, � = 0:9 ,

n̄ = 16744

I E.g. with � = 0:01, m = 1, � = 0:01, � = 0:01,

n̄ � 8:144� 1047007
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Non-Gaussian Copula OO Success Probability

I What if (Z ;X ) is a non-Gaussian copula, but still has `positive
dependence'?

I Denote success probability p0success (n;m; �)
I Properties:

1. Computed via m-dimensional integral
2. Non-decreasing in each of n, m, �
3. General bounds

1� (1� �)m � p0
success

(n;m; �) � 1� (1� �)n

4. In general,
lim
n!1

p0
success

(n;m; �) 6= 1
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Associated Gaussian Copula

I (Z ;X ) is an arbitrary copula with positive Kendall correlation:

� := E
h
sign

�
Z � Z̀

�
sign

�
X � X̀

�i
> 0

where
�
Z̀ ; X̀

�
is an independent copy of (Z ;X )

I Let (Z ;X 0) be the associated Gaussian copula with

� = sin (��=2)

I If (Z ;X ) is not `too far' from its associated Gaussian copula:

sup
(z;x)2(0;1)2

�
Pr
�
X 0 � x

��Z = z
�
� Pr (X � x jZ = z)

	
� �

then
p0success (n;m; �) � pNsuccess (n;m; �; �)� �
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O�ine Controller Tuning Setup

I Controller parameter � 2 Θ
I Candiates drawn from distribution P�

I Plant parameter  2 Ψ
I Uncertainty with distribution P 

I Controller performance function (measurable) :

J (�) : Θ ! R

I System performance function (measurable) :

J ( ; �) : Ψ�Θ ! R

I Induces a joint distribution for
�
J (�) ; J ( ; �)

�
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OO for Controller Tuning

I Draw n i.i.d. candidates �i � P�; i = 1; : : : ; n

I Tuned controller is best o�ine performer:

�� = argmin
�i2f�1;:::;�ng

J (�i )

I Independently realise a plant  � � P and test online:

J ( �; ��)

I Probability of meeting performance speci�cation J�

Pr �;�� (J ( �; ��) � J�)

I Appeal to OO success probability with n samples, m = 1, and
� = Pr �;�i (J ( �; �i ) � J�)
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Sequential Learning for Controller Tuning

I In practice, copula of
�
J (�) ; J ( ; �)

�
and � unknown.

I Need to estimate �, and � of the associated Gaussian copula

I Assumptions:

1.
�
J (�) ; J ( ; �)

�
has unknown continuous distribution with

`positive dependence' (� > 0)
2. Copula is not `too far' from associated Gaussian copula (with
�)

3. Performance speci�cation J� is `feasible'
4. Allowed to draw samples from P�, P and evaluate J, J

I Result: sequential learning algorithm that stops after �
samples, �nds a controller ��� such that

Pr �;��� (J ( �; ��� ) � J�) � 1� 

for any given  2 (�; 1].
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Lower Con�dence Bound for Success Probability

I Given i.i.d. sample of
�
J (�) ; J ( ; �)

�
I Obtain �nite-sample lower con�dence bounds for � and �:

Pr (� > b�n) � 1� �1

Pr
�
� > b�

n

�
� 1� �2

I Combine with monotonicity properties and lower bound:

Pr
�
psuccess (n;m; �) � pN

success

�
n; 1; b�n; b�n�� ��

� 1� �1 � �2
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Sequential Learning Algorithm

I Algorithm settings �1 2 (0; 1], �2 2 (0; 1], � 2 (0; 1]

Draw & evaluate new controller, plant pairStart

Compute �1, �2-lower con�dence bounds

pN
success

(n; 1; b�n; b�n) � 1� �?

Return best performing controller ���

Yes

No

I With settings � + �1 + �2 =  � �, then

Pr �;��� (J ( �; ��� ) � J�) � 1� � � �1 � �2 � �

= 1� 
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Algorithm Stopping Time

I Algorithm stops after drawing a random number of samples �

I Stopping time � is almost surely �nite:

Pr (� � n) � 1� O
�
e��n

�
with some constant � > 0

I Bound can be computed more precisely:

103 104n
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0.8
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Pr
(τ

≤
n)
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Lower Bound
Monte-Carlo
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Numerical Example: MPC for Diesel Air-Path

I Step reference for output

y = (pim; yEGR)

using inputs
u = (uthr;uEGR;uVGT)

I 4 states, with state and input constraints

I P : Gaussian perturbations to elements of nominal model�
A;B

�
A = A + SA

B = B + SB

I P�: Spectral decomposition to generate random positive
de�nite matrices

Q = WQDQW
>
Q
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Algorithm Results

I Performance speci�cation: J� = 6:5 seconds for settling time
of yEGR

I J evaluated using nominal model

I Single algorithm run with 1�  = 0:7 stopped after
� = 37144 samples
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Tuning Results

I Test single tuned controller ��� on `�eet' of 10,000
independently generated plants

I All 10,000 tests met performance speci�cation

I Similar results for multiple algorithm runs

I Possible sources of conservativeness:
I Inherent in lower con�dence bounds
I Actual copula may be more favourable to success probabiltiy

than associated Gaussian
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Further Work

I Physical experiments in combination with online tuning

I Testing other classes of controllers

I Principles of choosing P�
I Lower bound that includes m

I When distribution of
�
J (�) ; J ( ; �)

�
is not continuous
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