Model Predictive Controller | Tuning by Machine Learning and Ordinal Optimisation

Robert Chin^{1,3}

Supervisors: Prof. Chris Manzie¹, Prof. Jonathan E. Rowe³, Prof. Dragan Nešić¹, Prof. Iman Shames²

¹The University of Melbourne ²Australian National University ³University of Birmingham

Outline

Introduction

Other Contributions Machine Learning Tuning Framework Preference Learning Active Learning

Ordinal Optimisation

Lower Bound

Sequential Learning Algorithm for Probabilistically Robust Controller Tuning Numerical Example

Further Work

MPC quadratic cost function:

$$\mathsf{V}_{k} = \sum_{i=0}^{\mathsf{N}-1} \left(\mathsf{x}_{k|i}^{\top} \mathsf{Q} \mathsf{x}_{k|i} + \mathsf{u}_{k|i}^{\top} \mathsf{R} \mathsf{u}_{k|i} \right) + \mathsf{x}_{k|\mathsf{N}}^{\top} \mathsf{P} \mathsf{x}_{k|\mathsf{N}}$$

► The positive definite matrices Q, P, R are tuning variables.

Non-trivial relationship with closed-loop trajectory.

 Tuning MPC for performance can be non-intuitive and time-consuming. ► Application focus: Automotive diesel engine air-path

▶ With Toyota Japan

Offline Tuning

- Limited budget for controller testing/tuning on physical plant.
- ▶ However, can tune controllers offline in simulation beforehand.

- ▶ Algorithms for online MPC tuning successfully demonstrated.¹
- ► Want controllers tuned offline to be good initial points

¹IFAC 2020 (Maass, Manzie, Shames, Chin, Ulapane, Nešić, Nakada)

Outline

Introduction

Other Contributions Machine Learning Tuning Framework Preference Learning Active Learning

Ordinal Optimisation

Lower Bound

Sequential Learning Algorithm for Probabilistically Robust Controller Tuning Numerical Example

Further Work

Machine Learning Tuning Framework

- Human preferences & trade-offs important in tuning
- Want to replicate preferences in automated offline tuning
- Not easy to write a function describing human preferences
- Proposed framework² :

 Learn mapping from time-domain characteristics to scalar performance index.

Numeric rating data provided by human experts.

²ICARCV 2018 (Ira, Shames, Manzie, Chin, Nešić, Nakada, Sano)

Isotonic Preference Learning from Pairwise Comparisons

Potential problems with numeric rating labels

- e.g. scale can 'drift' over time
- Idea: to solicit pairwise comparisons from experts

- Data comprises pairs of features (x, x'), and binary labels indicating which is preferred.
- Some features may be *desirable*
 - e.g. faster settling time better, all else unchanged.
 - Want monotonicity constraints on particular features (i.e. isotonic regression).
- Proposed approach from pairwise comparison data using Gaussian process regression.³

³CDC 2018 (Chin, Manzie, Ira, Nešić, Shames)

Active Learning for LPV System Identification

- Linear Parameter Varying model suitable for diesel air-path
- Want to identify LPV model by conducting as few experiments as possible
- Active learning approach proposed using Gaussian process regression⁴

Conducts next experiment where there is the most uncertainty

Also used to quantify model uncertainty

⁴IFAC 2020 (Chin, Maass, Ulapane, Manzie, Shames, Nešić, Rowe, Nakada) _{9/34}

Outline

Introduction

Other Contributions

Machine Learning Tuning Framework Preference Learning Active Learning

Ordinal Optimisation Lower Bound

Sequential Learning Algorithm for Probabilistically Robust Controller Tuning Numerical Example

Further Work

Ordinal Optimisation and Randomised Algorithms

- Finding approximate solutions to difficult design problems, under uncertainty.
 - ► OO: from Discrete Event Dynamic Systems literature
 - RA: from Probabilistic Robust Control literature
- Similar philosophy simulate many random designs and pick the best
- Goal softening to control degree of suboptimality
- Research goal: obtain bound on performance of a controller tuned offline when tested online on a realised plant online.

Ordinal Optimisation Thought Experiment

- ▶ 100 job candidates, each with quality drawn i.i.d. $\mathcal{N}(0,1)$
- Interview each candidate, but quality observed with another i.i.d. N (0, 1) perturbation.

- ► Hire the best 5 observed candidates.
- Of the selected 5, what is the probability that at least one of the hirees is in the top 5% of the N (0, 1) population?

Formalising the Problem

▶ I.i.d. sample of size *n* of:

Select the best *m* observed:

$$\underbrace{Z_{1:n}}_{=X_{(1)}+Y_{(1)}} \leq Z_{2:n} \leq \cdots \leq \underbrace{Z_{m:n}}_{=X_{(m)}+Y_{(m)}}$$

Success probability:

$$p_{ ext{success}}(n, m, lpha, \xi) = \Pr\left(\min_{i \in \{1, ..., m\}} X_{\langle i \rangle} \leq x_{lpha}^*
ight)$$

• where $\alpha > 0$ is the 100 α percentile of the distribution of X

$$Z_{1:n} \leq Z_{2:n} \leq \cdots \leq Z_{m:n}$$
$$= X_{\langle 1 \rangle} + Y_{\langle 1 \rangle} \qquad = X_{\langle m \rangle} + Y_{\langle m \rangle}$$
$$p_{\text{success}}(n, m, \alpha, \xi) = \Pr\left(\min_{i \in \{1, \dots, m\}} X_{\langle i \rangle} \leq x_{\alpha}^{*}\right)$$

- What really matters is the joint distribution of (Z, X)
- If each of Z and X are transformed by a strictly increasing function, p_{success} is unchanged
- Can generalise (Z, X) to the class of continuous distributions with a bivariate Gaussian copula

- Copula: a multivariate distribution with Uniform (0, 1) marginals
- Decouples dependence within a multivariate distribution from its marginals
- Any distribution can be fully represented by its marginals and a copula
 - e.g. to sample from a bivariate distribution, first sample from the copula:

 (U_1, U_2)

then generate marginals using inverse probability integral transform:

 $(F_1^{-1}(U_1), F_2^{-1}(U_2))$

Gaussian Copula

Let

$$\begin{bmatrix} Z \\ X \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} 1 &
ho \\
ho & 1 \end{bmatrix}
ight)$$

Then the bivariate Gaussian copula with correlation ρ is the distribution of:

 $(\Phi(Z), \Phi(X))$

where Φ is the standard Gaussian CDF

Figure: Bivariate Gaussian copula density

Gaussian Copula OO Success Probability

- Suppose (Z, X) has a continuous distribution with a bivariate Gaussian copula and correlation $\rho > 0$
- Select the best *m* observed:

$$\underbrace{Z_{1:n}}_{\text{hidden } X_{(1)}} \leq Z_{2:n} \leq \cdots \leq \underbrace{Z_{m:n}}_{\text{hidden } X_{(m)}}$$

Success probability:

$$p_{ ext{success}}^{\mathcal{N}}\left(n,m,lpha,
ho
ight)= \mathsf{Pr}\left(\min_{i\in\{1,...,m\}}oldsymbol{X}_{\langle i
angle}\leq x_{lpha}^{*}
ight)$$

• Equivalence to Gaussian additive noise success probability, with $ho = \left(1+\xi^2
ight)^{-1/2}$

- 1. (Monotonicity) $p_{\text{success}}^{\mathcal{N}}(n, m, \alpha, \rho)$ is non-decreasing in each of n, m, α, ρ
- 2. (High probability) For any $\delta \in (0, 1]$, can find sufficiently large n so that

$$p_{ ext{success}}^{\mathcal{N}}\left(\textit{n},\textit{m},lpha,
ho
ight)\geq1-\delta$$

3. (Convergence to 1)

$$\lim_{n o \infty} p^{\mathcal{N}}_{ ext{success}}\left(n,m,lpha,
ho
ight) = 1$$

An Analytic Lower Bound

• For any $\boldsymbol{\omega} \in (0, \pi/2)$, let

$$c_1 := \frac{1}{2} - \frac{\omega}{\pi}, \quad c_2 := \frac{\cot \omega}{\pi - 2\omega}$$
$$\mu_n := -\sqrt{\frac{\log(nc_1)}{c_2}}, \quad \sigma_n^2 := \frac{-\log\log 2}{2c_2(\log(nc_1) - \log\log 2)}$$

▶ Then $\exists n^*(\omega) \in \mathbb{N}$ s.t. $\forall n \geq n^*(\omega)$:

$$p_{ ext{success}}^{\mathcal{N}}\left(\textit{n},\textit{m}, lpha,
ho
ight) \geq \Phi\left(rac{\Phi^{-1}\left(lpha
ight) -
ho\mu_{n}}{\sqrt{1 -
ho^{2} +
ho^{2}\sigma_{n}^{2}}}
ight)$$

Optimised bound w.r.t. ω

$$p_{\mathtt{success}}^{\mathcal{N}}\left(n,m,\alpha,\rho\right) \geq \sup_{\boldsymbol{\omega}\in(0,\pi/2):n\geq n^{*}(\boldsymbol{\omega})} \Phi\left(\frac{\Phi^{-1}\left(\alpha\right)-\rho\mu_{n}}{\sqrt{1-\rho^{2}+\rho^{2}\sigma_{n}^{2}}}\right)$$

Properties and Lower Bound Illustrated

Inversion of Lower Bound

The lower bound

$$\underline{p}_{\mathtt{success}}^{\mathcal{N}}(n,m,\alpha,\rho) := \sup_{\boldsymbol{\omega} \in (0,\pi/2): n \ge n^*(\boldsymbol{\omega})} \Phi\left(\frac{\Phi^{-1}(\alpha) - \rho\mu_n}{\sqrt{1 - \rho^2 + \rho^2 \sigma_n^2}}\right)$$

can be inverted

• For given m, α , ρ and $\delta \in (0, 1]$, find an \overline{n} s.t.

$$p_{ ext{success}}^{\mathcal{N}}\left(n,m,lpha,
ho
ight)\geq1-\delta,\quadorall n\geqar{n}$$

 \blacktriangleright E.g. with $\delta=$ 0.01, m= 1, lpha= 0.01, ho= 0.9 ,

 $\bar{n} = 16744$

• E.g. with $\delta = 0.01$, m = 1, $\alpha = 0.01$, $\rho = 0.01$,

 $\bar{n} \approx 8.144 \times 10^{47007}$

Non-Gaussian Copula OO Success Probability

- What if (Z, X) is a non-Gaussian copula, but still has 'positive dependence'?
- Denote success probability $p'_{\text{success}}(n, m, \alpha)$
- Properties:
 - 1. Computed via *m*-dimensional integral
 - 2. Non-decreasing in each of n, m, α
 - 3. General bounds

$$1-\left(1-lpha
ight)^m\leq p_{ ext{success}}'\left(n,m,lpha
ight)\leq 1-\left(1-lpha
ight)^n$$

4. In general,

$$\lim_{n\to\infty}p_{\mathrm{success}}'\left(n,m,\alpha\right)\neq 1$$

Associated Gaussian Copula

• (Z, X) is an arbitrary copula with positive Kendall correlation:

$$\kappa := \mathbb{E}\left[\operatorname{sign}\left(Z - \dot{Z}
ight) \operatorname{sign}\left(X - \dot{X}
ight)
ight] > 0$$

where (Z, X) is an independent copy of (Z, X)
 ▶ Let (Z, X') be the associated Gaussian copula with

$$ho = \sin(\pi\kappa/2)$$

• If (Z, X) is not 'too far' from its associated Gaussian copula:

$$\sup_{(z,x)\in(0,1)^2} \left\{ \Pr\left(X' \le x \big| Z = z\right) - \Pr\left(X \le x \big| Z = z\right) \right\} \le \nu$$

then

$$p_{ ext{success}}^{\prime}\left(n,m,lpha
ight) \geq p_{ ext{success}}^{\mathcal{N}}\left(n,m,lpha,
ho
ight) -
u$$

Outline

Introduction

Other Contributions

Machine Learning Tuning Framework Preference Learning Active Learning

Ordinal Optimisation Lower Bound

Sequential Learning Algorithm for Probabilistically Robust Controller Tuning Numerical Example

Further Work

Offline Controller Tuning Setup

• Controller parameter $heta \in \Theta$

• Candiates drawn from distribution \mathcal{P}_{θ}

- \blacktriangleright Plant parameter $\psi \in \Psi$
 - Uncertainty with distribution \mathcal{P}_{ψ}

Controller performance function (measurable) :

 $\overline{J}(\theta):\Theta
ightarrow\mathbb{R}$

System performance function (measurable) :

 $J(\psi, \theta) : \Psi \times \Theta \to \mathbb{R}$

► Induces a joint distribution for $\left(\overline{J}(\theta), J(\psi, \theta)\right)$

OO for Controller Tuning

• Draw *n* i.i.d. candidates $\theta_i \sim \mathcal{P}_{\theta}$, i = 1, ..., n

Tuned controller is best offline performer:

$$\theta^{*} = \operatorname*{argmin}_{\theta_{i} \in \{\theta_{1}, \dots, \theta_{n}\}} \overline{J}(\theta_{i})$$

 \blacktriangleright Independently realise a plant $\psi^* \sim \mathcal{P}_\psi$ and test online:

 $J(\psi^*, \theta^*)$

Probability of meeting performance specification J*

$$\mathsf{Pr}_{\psi^*,\theta^*}\left(J\left(\psi^*,\theta^*\right)\leq J^*\right)$$

Appeal to OO success probability with *n* samples, m = 1, and $\alpha = \Pr_{\psi^*, \theta_i} (J(\psi^*, \theta_i) \le J^*)$

Sequential Learning for Controller Tuning

- ▶ In practice, copula of $(\overline{J}(\theta), J(\psi, \theta))$ and α unknown.
- ▶ Need to estimate α , and ρ of the associated Gaussian copula
- Assumptions:
 - 1. $(\overline{J}(\theta), J(\psi, \theta))$ has unknown continuous distribution with 'positive dependence' ($\kappa > 0$)
 - 2. Copula is not 'too far' from associated Gaussian copula (with ν)
 - 3. Performance specification J^* is 'feasible'
 - 4. Allowed to draw samples from $\mathcal{P}_{ heta}$, \mathcal{P}_{ψ} and evaluate \overline{J} , J
- Result: sequential learning algorithm that stops after τ samples, finds a controller θ^{*}_τ such that

$$\mathsf{Pr}_{\psi^*, heta^*_{ au}}\left(J\left(\psi^*, heta^*_{ au}
ight)\leq J^*
ight)\geq 1-\gamma$$

for any given $\gamma \in (
u,1]$.

Lower Confidence Bound for Success Probability

- Given i.i.d. sample of $(\overline{J}(\theta), J(\psi, \theta))$
- Obtain finite-sample lower confidence bounds for α and ρ:

$$\Pr(\alpha > \widehat{\underline{\alpha}}_n) \ge 1 - \beta_1$$

 $\Pr(\rho > \widehat{\underline{\rho}}_n) \ge 1 - \beta_2$

Combine with monotonicity properties and lower bound:

$$\mathsf{Pr}\left(p_{\mathsf{success}}\left(n,m,lpha
ight) \geq \underline{p}_{\mathsf{success}}^{\mathcal{N}}\left(n,1,\widehat{\underline{lpha}}_{n},\widehat{\underline{
ho}}_{n}
ight) -
u
ight) \ \geq 1 - eta_{1} - eta_{2}$$

Sequential Learning Algorithm

▶ With settings $\delta + eta_1 + eta_2 = m{\gamma} -
u$, then

$$\mathsf{Pr}_{\psi^*, heta^*_ au}\left(J\left(\psi^*, heta^*_ au
ight) \leq J^*
ight) \geq 1-\delta-eta_1-eta_2-
u \ = 1-\gamma$$

Algorithm Stopping Time

- \blacktriangleright Algorithm stops after drawing a random number of samples au
- Stopping time τ is almost surely finite:

$$\Pr(au \leq n) \geq 1 - O(e^{-\lambda n})$$

with some constant $\lambda > 0$

Bound can be computed more precisely:

Numerical Example: MPC for Diesel Air-Path

Step reference for output

$$\mathtt{y} = (\mathtt{p}_{\mathtt{im}}, \mathtt{y}_{\mathtt{EGR}})$$

using inputs

$$\textbf{u} = (\textbf{u}_{\texttt{thr}}, \textbf{u}_{\texttt{EGR}}, \textbf{u}_{\texttt{VGT}})$$

4 states, with state and input constraints

*P*_ψ: Gaussian perturbations to elements of nominal model (Ā, B)

$$A = \overline{A} + S_A$$
$$B = \overline{B} + S_B$$

*P*_θ: Spectral decomposition to generate random positive definite matrices

$$\mathsf{Q} = \mathsf{W}_{\mathsf{Q}}\mathsf{D}_{\mathsf{Q}}\mathsf{W}_{\mathsf{Q}}^{ op}$$

Algorithm Results

- ▶ Performance specification: $J^* = 6.5$ seconds for settling time of y_{EGR}
- \blacktriangleright \overline{J} evaluated using nominal model
- Single algorithm run with $1 \gamma = 0.7$ stopped after $\tau = 37144$ samples

- Test single tuned controller θ^{*}_τ on 'fleet' of 10,000 independently generated plants
- All 10,000 tests met performance specification
- Similar results for multiple algorithm runs
- Possible sources of conservativeness:
 - Inherent in lower confidence bounds
 - Actual copula may be more favourable to success probability than associated Gaussian

- Physical experiments in combination with online tuning
- Testing other classes of controllers
- Principles of choosing P_θ
- Lower bound that includes m
- When distribution of $\left(\overline{J}(\theta), J(\psi, \theta)\right)$ is not continuous