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What is Quickest Change Detection?

Quickly detecting change (or faults) is important in many disciplines including mechanical 
engineering, chemical engineering, aerospace engineering and automotive systems.
In many situations it is advantageous to monitor a signal of an engineering system for the purpose 
of quicky alerting in the event of a change in behaviour (e.g. it becomes broken). 
Mathematically, consider sequentially observing a system process whose statistical distribution 
changes, at some unknown time 𝜈, from 
• having probability density 𝑏! . to  
• having probability density 𝑏" . . 
Quickest Change Detection (QCD) is an optimal stopping problem where the task is to quickly 
declare the change has occurred to minimize detection delay subject a false alarm criteria.
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𝑓! " 𝑓" "

Change in the statistics

Image credit: 
Molloy

Very general problem that can be considered in any application with sequential data

𝑏" . 𝑏# .
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Toy illustrative example

• The signal 𝑦# is
• pre change 𝑏! . : unit variance 

Gaussian r.v. with mean =0, and 
• post change 𝑏" . : unit variance 

Gaussian r.v. with mean =1. 
• You are sequentially watching 𝑦# and 

want to alert a change with short delay 
whilst managing risk of false alarm.

• Here change occurred a 5000 (post 
change marked in red for emphasis).

• CUSUM QCD approach clearly detects.
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Example: UAS fault detection
• Building fault resilient autonomous system like 

requires system with ability to self-detect fault 
or anomaly conditions and switch to recovery 
model.

• Aircraft avionics have a wealth of information: 
GPS/INS navigation data, airspeed etc.

• Currently investigate what measurements and 
what fault detection tools.

• Nice dataset to play with Air Lab Failure and 
Anomaly (ALFA) Dataset:

• http://theairlab.org/alfa-dataset/

Image credit: http://theairlab.org/alfa-dataset/
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Detection of parametric roll resonance (Maritime 
system) application
• Parametric roll resonance is a 

phenomenon where the wave encounter 
frequency is twice the natural roll 
frequency of the ship can lead to unsafe
roll motion amplification.

• Quick detection would allow preventative 
action to avoid capsizing or damage to the 
ship and crew.

• There are effects present in roll, pitch and 
heave axis.

J. Kennedy, J. Ford, T. Perez and F. Valentinis, “Detection of parametric roll 
resonance using Bayesian discrete-frequency model selection”, CAMS 2018.
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Aircraft heading change detection

Image Based: 
Timothy L. Molloy and Jason J. Ford, “HMM Relative Entropy Rate 
Concepts for Vision-based Aircraft Manoeuvre Detection”, AuCC 2013.

Heading info based: 
Troy S. Bruggemann and Jason J. Ford, “Coordinated Change Detection 
for UAV Formations”, AuCC 2016.
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Vision based aircraft detection

• UAS need to replicate human pilot’s role in mid-air 
collision avoid, detect 12.5s before.

• UAS have limited carriage capability.
• Vision seems most viable path.
• But, at this range, aircraft occupies small number 

of pixels, and lots of aircraft like artefacts.
• Posed as a QCD problem

• consider no aircraft 𝑏! . and aircraft present 
𝑏" . densities. Very low SNR between these 
densities.

• We include within a Hidden Markov Model 
(HMM) to model temporal characteristics (i.e. 
that aircraft will persist across frames).

Lai, et al., Relative Entropy Rate Based Multiple 
Hidden Markov Model Approximation, IEEE Trams 
SP, 2010.



CRICOS No.00213JCRICOS No.00213J

Example of test statistic from aircraft detection data
• This data is from a real vision-based aircraft 

detection sequence.
• QCD techniques used to trigger an alert (this 

is a low SNR event so QCD important tool).
• The threshold (dash line) provides a tradeoffs 

delay and false alarms.
• Notes: 

• A slightly target looking object relates to 
earlier cause a slight raise in the test 
statistic.

• The large increase corresponds to (true 
case) of an aircraft present.

• The test statistic goes down once aircraft 
has passed.
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Improved detection of weak 
signals (SNR boosting)

In 2017-9 developed better change detection 
techniques for weak signal cases (with Jasmin 
Martin and Tim Molloy).
The result: Principled QCD and models for low 
SNR vision-based aircraft detector. 
The result: detection now >2.3 km, low SNR. 
Now exceeding human level performance.
Plus deep learnt boosting by few hundred 
metres.

Jump
better
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A range of change detection approaches compared

• Fault detection (FD). Filter based on model of fault-free system 
• Chi-squared test on the filter residue
• Test on the model evidence (filter model posterior)

• Classic Bayesian QCD (BQCD). Non-ergodic Bayesian change model
• Shiryaev rule (test on the no-change posterior)

• Intermittent Signal Detection (ISD). Ergodic Bayesian change model
• Test on a signal’s posterior

• Non-Bayesian QCD (NBQCD). Non-random change event model
• The famous CUSUM test (likelihood ratio type quantity)
• There are two criteria: Lorden and Pollak

• There are robust versions of these (i.e. versions with minimax criteria)
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When to use what technique?

From simplest to more powerful
Fault detection (FD)
Bayesian QCD (BQCD)

Intermittent Signal Detection (ISD)
Non-Bayesian QCD (NBQCD)

SNR (residue) pdfs known pdfs partially known Intractable models*

> 6 dB         (High) anything anything FD

2 to 6 dB    (Medium) FD  FD  FD

-10 to 2 dB (Low) BQCD  Robust BQCD  open problem

< -10 dB      (Very low) NBQCD or ISD Robust NBQCD or ISD open problem

The simplest approach that might work, sorted by SNR and before/after pdf knowledge.

Note:
SNR (residue) means the residue SNR after you in exploited all the known signal structure.
*Not clear now to use BQCD, ISD or NBQCD on intractable models. Some work done.



• Bayesian Quickest Change 
Detection is an optimal stopping 
problem.

• Optimal stopping problems are an 
important sub-class of optimal 
control problems.

• In a general informal sense, their 
solutions can be described by 
discrete time dynamic programming 
equations; which rarely have 
closed-form solutions.

(Bayesian) 
QCD as an 
optimal 
stopping 
problem

The hire problem
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Bayesian Quickest Change Detection

Here “Bayesian” refers to the model of change time event.
In the classic Bayesian version of the problem, we assume the change time 𝝂 ≥ 𝟎 is a random 
variable with geometric prior, 𝝅𝒌 = 𝟏 − 𝝆 𝒌𝝆, with 𝝆 ∈ (𝟎, 𝟏). Also assume, that at the change 
time 𝜈 the statistical distribution of a sequential observed process changes from

• i.i.d random variable with probability density 𝑏% . to  
• i.i.d random variable with probability density 𝑏! . . 

The 𝑃& . and 𝐸&[. ] that follow are measures and expectation operations arising from assumed 
geometry prior. 
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Bayesian Quickest Change Detection

We are interested at designing a stopping rule 𝜏 ≥ 0. For a considered stopping rule 𝜏, let us 
define PFA (probability of false alarm) as

𝑃𝐹𝐴 𝜏 = 𝑃&(𝜏 < 𝜈).
We are interested in designing a stopping rule 𝜏 (declaring a change) that solves the optimization 
problem 

inf
'() * +,

𝐸&[𝜏 − 𝜈|𝜏 > 𝜈].

That is, minimizing the average detection delay subject to a constraint on false alarm performance.
This problem can be re-written as unconstrained optimization of J 𝜏 = 𝑐𝐸&[ 𝜏 − 𝜈 -]+ 𝑃𝐹𝐴 𝜏 , 
where 𝜏 − 𝜈 - = max 𝜏 − 𝜈, 0 .
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Dynamic programming sketch

Importantly, we can equivalently write our BQCD solution as the stopping rule 𝜏 that optimises the cost 
𝐽 𝜏, &𝑋#! = 𝐸$[𝑐Σℓ&#

'(! 1 − &𝑋ℓ! + &𝑋'!| &𝑋#!]
where&𝑋#! is the prior that no change has occurred at time 0, and 2𝑋)! ≜ 𝑃$(𝑛𝑜 𝑐ℎ𝑎𝑛𝑔𝑒|𝑦*, 𝑦!, … , 𝑦)). 
We can define the value function as, for 2𝑋 ∈ [0,1],

𝑉 2𝑋 ≜ 𝑖𝑛𝑓'𝐽 𝜏, 2𝑋 .
In this case 𝑉 2𝑋 satisfies a variational inequality type discrete recursion

𝑉 2𝑋 = min 𝑐 1 − 2𝑋 + 𝐸 𝑉 2𝑋+ 2𝑋, 𝑦 2𝑋 , 2𝑋

where 2𝑋+ 2𝑋, 𝑦 is the 1 step ahead of the conditional pdf of the no change event given the 
measurement 𝑦 (i.e. one step ahead of the filter). 
The value function encodes the optimal solution, but it is challenging to solve this recursion directly.

Red =stop, 
Green = continue
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Solution: A threshold test

Remarkably, it can be shown that the optimal rule solving the BQCD problem can be written as a 
simple threshold check on the no-change posterior D𝑋#! ≜ 𝑃&(𝑛𝑜 𝑐ℎ𝑎𝑛𝑔𝑒|𝑦., 𝑦!, … , 𝑦#).   That is, the 
optimal rule is

𝜏∗ = inf{𝑘 ∶ D𝑋#! ≤ ℎ}
where ℎ is selected to control PFA.
This D𝑋#! can be exactly computed using simple filter recursion as the observations arrive, and the 
complicated DP equation avoided. The posterior filter is a simple 2 state HMM filter.

Optimal rule is a threshold test initially established by Shiryaev (1963), but an elegant modern treatment can be 
found in V. Krishnamurphy, Partially observed Markov decision processes, Cambridge University Press, 2016. 
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Convenient recursion for no-change posterior

The no-change posterior can be written as the scalar recursion
D𝑋#! = 𝑁# 1 − 𝜌 𝑏!(𝑦#) D𝑋#!

where normalization factor given by
𝑁#0! = 𝑏" 𝑦# + (1 − 𝜌)(𝑏! 𝑦# − 𝑏"(𝑦#)) D𝑋#0!! .

Proof: Let 1st Markov chain state denote no change yet and 2nd state denote change has 
occurred. Build left-to-right transition matrix with 𝜌 etc. elements, 𝑏% . etc. in observation 
equation. Then D𝑋#!+ D𝑋#"=1 means simple algebra on the hidden Markov model filter recursions 
leads to the above scalar recursion.
Helps make the posterior recursion look somewhat scalar and linear and open to analysis.  

Jason J. Ford, Jasmin James, Timothy L. Molloy, On the informativeness of measurements in 
Shiryaev’s Bayesian quickest change detection, Automatica, 2020.



The role of model 
assumptions

Jenkins (1976) “All 
models are wrong, 
but some are 
useful”

Deep Drive



Empirical science’s basic 
principle is that knowledge 
should be extracted from 
observations

One debate is the role of 
prior knowledge and models 
in this process
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My journey with model 
error started in ‘98
What do your estimates mean when your 
model is wrong? 
– from my PhD Thesis, 1998.

This simple question has inspired much of 
my career!

Ford, Jason (1998) Adaptive hidden Markov model estimation and applications.
PhD thesis, Australian National University.

https://eprints.qut.edu.au/108491/


CRICOS No.00213JCRICOS No.00213J

Quantify and managing 
error via information 
theoretic tools
Aim: investigate relative entropy (AKA Kullback
Leibler distance) to quantify model error.
Program of research (2011-19):
• Techakesari et al., Automatica 2011 (first progress 

on my PhD question – thought I was done).
• Then Molloy, et al. in the “* minimax robust 

quickest change detection *” series of IEEE 
papers† appearing in

• IEEE Trans IF 2016, 
• IEEE Trans SP 2017, 
• IEEE CSL 2017, and
• IEEE Trans AC 2019. 

† contain much other goodness (RE only small part).



What didn’t we know in 2018?

Since 2008 we had been using a physically 
unrealistic motion model within our HMM 
filter engine to make our vision-based 
aircraft detector work.
Bad model but ergodic and detector worked. 
Was a hack! (BQCD involves a left-to-right 
HMM, so not ergodic).
In 2019 we developed new ergodic QCD for 
our detector, better physical match, and 
achieved better detection performance.
Nice, but still didn’t have a mathematical 
explanation why BQCD didn’t work!

Lai, Et al. Vision-Based Estimation of Airborne Target 
Pseudobearing Rate using Hidden Markov Model Filters, 
IEEE AES 2013.
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What was wrong with BQCD?

• In ’94-5 Bengio showed RNNs and left-to-right HMMs 
have difficulty temporal modelling because of vanishing 
dependence in time!

• Further, using HMMs Bengio showed more structure 
allowed learning longer dependences.

• We had observed that Bayesian QCD didn’t work in low 
SNR (Bayesian QCD involves left-to-right HMMs 🤔).

• What is the interplay between low SNR and left-to-right 
models?

Bengio, Et al., Learning long-term dependencies with 
gradient descent,  IEEE Trans NN. 1994

Bengio, Et al., Diffusion of Credit in Markovian Models, NIPS, 1995.
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Example: Gaussian models

Let us consider b! y1 and b" y1 unit variance Gaussian with slightly different post change means 

Change Change
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Example: Gaussian models
Below m2 = 0.32 the behavior of D𝑋3%%%!

changes becoming increasingly 
convinced a change has occurred?
Can’t meaningfully set a detection 
threshold ℎ

lo
g(
0 𝑋 !
" )

Time Difference in mean

m
ea
n(
0 𝑋 #
$$
$

"
)

1000 trials

log(ℎ)
?

Consider 𝜌 = 0.05. Simulation before the change event. 
Red is case with post change mean shift of 0.23 (not 
informative) and Blue is case with post change mean shift 
of 0.4 (expected case)
There is a critical value m7 below which the detector 
breaks.
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What is the mechanism here?

For some insight consider the case when b+ y, = b- y, (no measurement 
information). Here no change posterior recursion become exponential decay of

$𝑋.+ = 1 − 𝜌 .

and hence the test statistic becomes increasing confident change has occurred 
(even when no change).
Informally, this 1 − 𝜌 . mechanism is dominating $𝑋.+ and when b+ y, and b- y,
are not sufficiently different (the prior model is too strong to overcome).
Interestingly, there is a critical point where suddenly the measurements are strong 
enough!
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Definition: a weak practical super-martingale

A super-martingale has the property 𝐸& X1-!|X1 ≤ X1 (does not trend upwards). We introduced a 
new super-martingale concept.
The no change posterior log( D𝑋#!) is a weak practical super-martingale if for any arbitrarily small 
𝛿4 > 0 there exists a ℎ5 > 0 such that if D𝑋#! < ℎ5 implies

𝑃& for all 𝑛 ≥ 𝑘, 𝐸& alog( D𝑋6-!! ) log( D𝑋6!) < log D𝑋6! > 1 − 𝛿4

Basically, to any level of probabilistic certainty, 1 − 𝛿4, there existed practical interval D𝑋#! < ℎ5 that 
D𝑋#! trends down (in a weak sense).

Note: “weak” as holding with 𝑃% > 1 − 𝛿&, “practical” as holding for any “𝛿& > 0 there exists a ℎ' > 0”, and “super-martingale” the green part.   
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A weak practical super-martingale when 
an interval trap !𝑋!" < ℎ# exists

ℎ$

k

/𝑋%"

trap

If you reach the trap,
< 1 − 𝛿& probability of 
not trending upwards.

lo
g(
0 𝑋 !
" )

Time
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Lemma: A no change posterior update bound 

Writing the log of the recursion in D𝑋#! is useful
log( D𝑋#!) = log𝑀# + log( D𝑋#0!! )

where 𝑀# ≜ 𝑁# 1 − 𝜌 𝑏! 𝑦# as properties of 𝑀#let us start to access the behavior of D𝑋#! via an 
additive mechanism. 

The following D𝑋#0!! dependent bound on 𝑀# exists. For any 𝛿 > 0, then is a h7 > 0 such that for 
any D𝑋#0!! < ℎ7 we have 

𝐸& log𝑀# | D𝑋#0!! < log 1 − 𝜌 + D(b!(y1) b" y1 + 𝛿

D(b"(y') b# y'

Note: Relative entropy D(b"(y') b# y' is a pseudo distance measure between densities and log 1 − 𝜌 < 0.
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Lemma proof sketch

Lemma: The following 2𝑋)(!! dependent bound on 𝑀) exists. For any 𝛿 > 0, then is a h? > 0 such that 
for any 2𝑋)(!! < ℎ? we have 

𝐸$ log𝑀) | 2𝑋)(!! < log 1 − 𝜌 + D(b!(y@) b" y@ + 𝛿
Proof sketch:
• We re-express log N) = −log b" y@ + 𝛾) where 𝛾) can be monotonically bounded by 2𝑋)(!! .
• We can then re-express 𝐸$ log𝑀) | 2𝑋)(!! = log 1 − 𝜌 + E$ Wlog A! B"

A# B"
2𝑋)(!! + 𝛿 where 𝛿 can be 

monotonically bounded by 2𝑋)(!! .
• We then show E$ Wlog A! B"

A# B"
2𝑋)(!! is bounded by the relative entropy D(b!(y@) b" y@ .

• As here 𝛿 is monotonically bounded by 2𝑋)(!! , we can always find the h? > 0 s.t. the lemma result 
holds.

𝑀% ≜ 𝑁% 1 − 𝜌 𝑏" 𝑦%

Recall:
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Key Result: Theorem on Insufficiently informative 
measurements
If b! y1 and b" y1 are insufficiently informative in the sense

D(b! y1 b" y1 < log
1

1 − 𝜌
then log( D𝑋#!) is a weak practical super-martingale as defined earlier.
Proof sketch:
• Previous lemma and the above condition, means if D𝑋#0!! < ℎ7 then log( D𝑋#!) heads down in a 

super-martingale looking sense (it remains to show if continues that direction at future steps).
• A tunneling argument can be used to allow application of a maximal inequality for positive super-

martingales. For any ℎ7 select, I pick an auxiliary positive super-martingale to tunnel. 
• Then follows for any 𝛿4 > 0 there exists a ℎ5 > 0 such that an interval trap D𝑋#! < ℎ5 must exist 

and the theorem claim holds.
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Outline of proof (part 1)

Noting log( /𝑋%") = log𝑀% + log( /𝑋%("" ), then taking 𝐸)[. | /𝑋%("" ] gives

𝐸) log /𝑋%" log /𝑋%("" = 𝐸) log𝑀% log /𝑋%("" + log( /𝑋%("" )

Then previous lemma gives if D(b" y' b# y' < log "
"(*

, then for any 𝛿 > 0, then is a h+ > 0 such that for 
any /𝑋%("" < ℎ+ we have that 𝐸) log𝑀% log /𝑋%("" <0 and hence

𝐸) log /𝑋%" log /𝑋%("" < log( /𝑋%("" )

This looks somewhat like a super-martingale, once in /𝑋%("" < ℎ+ we expect to tread downward. But is there is 
chance of leaving /𝑋," < ℎ+ for some 𝑛 > 𝑘?
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Outline of proof (part 2)
For any 𝛿! > 0 you select there is a ℎ" > 0 such that the posterior bound holds.
Select smaller internals ℎ# and ℎ$ where ℎ$ < ℎ# < ℎ".  Then define an auxiliary positive 
super-martingale

Z% = max log
&'(
)

(*
, 0 .

Using maximal inequality for positive super-martingales gives
P) max

*+,
𝑍- ≥ log ℎ"/ℎ$ ≤ .+[0(]

234 (,/(*
.

After a few substitutions, we can obtain for complimented event set,

P) max
*+,

log 4𝑋,6 < log ℎ" > 1 − (-/(*
(,/(*

.

It then follows, for any 𝛿! > 0 we can then select ℎ# and ℎ$ so that (-/(*
(,/(*

≤ 𝛿! and 
remain in  4𝑋,6 < ℎ" and the theorem claim holds.

ℎ+

ℎ$

posterior update bound 

k

/𝑋%"

trap

If you reach the trap,
< 1 − 𝛿& probability of 
escaping /𝑋%" < ℎ+.
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I know Kalman filters. 
Convince me of this sorcery!
• Imagine a simple scalar process 𝑥% ∈ 𝑅 stable to the 

origin, 𝐴 < 1, and small process variance. Consider 
w.l.o.g. an output matrix C = 1.

• Imagine a (mismatched) sequence of measurements 
𝑦% having nonzero mean (w.l.o.g.) 𝑀 = 1,

• We will now imagine the Kalman filter estimates 
N𝑥% arising under difference assumed measurement 
variances 𝑅. Informally, as 𝑅 ↑, N𝑥% → 0 (as the 
Kalman gain K' → 0, measurements have less 
impact and the 𝐴 < 1 drives N𝑥% → 0). 

• Whilst the N𝑥% will still be influenced by 𝑦% (having 
mean 𝑀 > 0), but the N𝑥% will get closer to 0 as 𝑅 ↑
(i.e. the influence of 𝑦% reduces as 𝑅 ↑).

𝑅=10

𝑅=100

𝑅=1000

A = 0.99, C = 1, Q = 0.1 and 𝑅-./0=0.1.

Similar phenomenon if 𝑅 = 𝑅-./0 fixed and Q reduced
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I know Kalman filters. Convince me of this sorcery!

I let you select a small ball 𝐵 (interval) at the 
origin. Whatever 𝐵 you select, I claim there will 
be a critical 𝑅U such that for any 𝑅 > 𝑅U then ,𝑥.
can become trapped in 𝐵 (in a probabilistic 
sense).
The issue is not that the Kalman filter/HMM 
filter loses optimality, but that measurements 
are so weak (relative to the model) that I 
wonder if we lose practical observability.

𝐵
𝑅1 < 1000
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QCD fixes and general thoughts

• Fixes for QCD. There are other QCD approaches that don’t suffer the same issues.
• Behaviour arises due to Bayesian non-ergodic change model.
• [Non-Bayesian] e.g. Pollak or Lorden’s criterion (well known CUSUM algorithm).
• [Ergodic Bayesian change model] e.g. Our quickest intermittent signal detection problem.

• General thoughts
• We would expect similar phenomenon to arise in more complex Bayesian QCD or filter 

problems involving non-ergodic models with weak observations. 
• But my Kalman filter example shows also artefacts present in ergodic models.

• Take away message: Be careful with models in low SNR situations.



Questions

Thank you.


