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What is Quickest Change Detection?

Quickly detecting change (or faults) is important in many disciplines including mechanical
engineering, chemical engineering, aerospace engineering and automotive systems.

In many situations it is advantageous to monitor a signal of an engineering system for the purpose
of quicky alerting in the event of a change in behaviour (e.g. it becomes broken).

Mathematically, consider sequentially observing a system process whose statistical distribution
changes, at some unknown time v, from

» having probability density b*(.) to
» having probability density b%(.).

Quickest Change Detection (QCD) is an optimal stopping problem where the task is to quickly
declare the change has occurred to minimize detection delay subject a false alarm criteria.



Comirs

Change in the statistics

Yiep Pre-Change Probability Law Post-Change Probability Law
b'(.) b?(.)
[ : ) [ : )
o
o
o z o 5
i : o
o
? ©
FO ° _ _
Image credit: " Time Step, &

Molloy

Detection Delay

Very general problem that can be considered in any application with sequential data
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Toy lillustrative example

The signal y, is

- pre change b'(.): unit variance
Gaussian r.v. with mean =0, and

« post change b4(.): unit variance
Gaussian r.v. with mean =1.

* You are sequentially watching y; and
want to alert a change with short delay
whilst managing risk of false alarm.

» Here change occurred a 5000 (post
change marked in red for emphasis).

« CUSUM QCD approach clearly detects.
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Example: UAS fault detection

 Building fault resilient autonomous system like
requires system with ability to self-detect fault
or anomaly conditions and switch to recovery
model.

« Aircraft avionics have a wealth of information:
GPS/INS navigation data, airspeed etc.

« Currently investigate what measurements and
what fault detection tools.

* Nice dataset to play with Air Lab Failure and
Anomaly (ALFA) Dataset:

 http://theairlab.org/alfa-dataset/

Image credit: http://theairlab.org/alfa-dataset/ | crcosnomes:
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Detection of parametric roll
system) application

« Parametric roll resonance is a
phenomenon where the wave encounter
frequency is twice the natural roll
frequency of the ship can lead to unsafe
roll motion amplification.

* Quick detection would allow preventative
action to avoid capsizing or damage to the
ship and crew.

* There are effects present in roll, pitch and
heave axis.
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J. Kennedy, J. Ford, T. Perez and F. Valentinis, “Detection of parametric roll
resonance using Bayesian discrete-frequency model selection”, CAMS 2018.
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Aircraft heading change detection

Flat Filter Track
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Fig. 3. Ground track of vehicle travelling East to West with true changes
+ and change detections *.

Image Based:
Timothy L. Molloy and Jason J. Ford, “HMM Relative Entropy Rate

Concepts for Vision-based Aircraft Manoeuvre Detection”, AuCC 2013.

Heading info based:
Troy S. Bruggemann and Jason J. Ford, “Coordinated Change Detection
for UAV Formations”, AuCC 2016.

CRICOS No.00213J
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Vision based aircraft detection

« UAS need to replicate human pilot’s role in mid-air
collision avoid, detect 12.5s before.

« UAS have limited carriage capability.
 Vision seems most viable path.

 But, at this range, aircraft occupies small number
of pixels, and lots of aircraft like artefacts.

« Posed as a QCD problem

- consider no aircraft b(.) and aircraft present
Ié (.)_tc_lensmes. Very low SNR between these
ensities.

* We include within a Hidden Markov Model
%HMM) to model temporal characteristics (i.e.
hat aircraft will persist across frames).

Lai, et al., Relative Entropy Rate Based Multiple
Hidden Markov Model Approximation, IEEE Trams
SP, 2010.




Probability present
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Example of test statistic from aircraft detection data

0.8 |

— Test statistic
— — threshold
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This data is from a real vision-based aircraft
detection sequence.

QCD techniques used to trigger an alert (this
is a low SNR event so QCD important tool).

The threshold (dash line) provides a tradeoffs
delay and false alarms.
Notes:

 Aslightly target looking object relates to
earlier cause a slight raise in the test
statistic.

« The large increase corresponds to (true
case) of an aircraft present.

« The test statistic goes down once aircraft
has passed.

CRICOS No.00213J
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Improved detection of weak
signals (SNR boosting)

In 2017-9 developed better change detection

techniques for weak signal cases (with Jasmin
Martin and Tim Molloy).

The result: Principled QCD and models for low
SNR vision-based aircraft detector.

The result: detection now >2.3 km, low SNR.
Now exceeding human level performance.

Plus deep learnt boosting by few hundred
metres.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Quickest Detection of Intermittent Signals With Application
to Vision-Based Aircraft Detection

Jasmin James™, Jason J. Ford"™, and Timothy L. Molloy

Abstract—In this brief, we consider the problem of quickly
detecting changes in an intermittent signal that can (repeatedly)
switch between a normal and an anomalous state. We pose this
intermittent signal detection (ISD) problem as an optimal stop-
ping problem and establish a quickest ISD rule with a threshold
structure. We develop bounds to characterize the performance
of our ISD rule and establish a new filter for estimating its
detection delays. Finally, we examine the performance of our ISD
rule in both a simulation study and an important vision-based
aircraft detection application where the ISD rule demonstrates
improvements in detection range and false alarm rates relative
to the current state-of-the-art aircraft detection techniques.

Index Terms—Bayesian quickest change detection, change
detection, filtering, sense and avoid.

posed in the past decade. Incipient fault detection seeks
to identify slow drifts in system parameters [7]; multicyclic
detection seeks to identify a distant change in a stationary
regime where detection procedures are reset after each false
alarm [8]; quickest transient detection seeks to identify a
change that occurs once for a period of time and then
disappears [9], [10]; and quickest detection under transient
dynamics that seeks to identify a persistent change which
does not happen instantaneously, but after a series of transient
phases [11]. In this brief, we consider a new quickest ISD
problem where a change can repeatedly appear and disappear
over time.

Our auickest ISD pnroblem is insnired bv the important
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A range of change detection approaches compared

Fault detection (FD). Filter based on model of fault-free system
» Chi-squared test on the filter residue
» Test on the model evidence (filter model posterior)

Classic Bayesian QCD (BQCD). Non-ergodic Bayesian change model
« Shiryaev rule (test on the no-change posterior)

Intermittent Signal Detection (ISD). Ergodic Bayesian change model
» Test on a signal’s posterior

Non-Bayesian QCD (NBQCD). Non-random change event model
 The famous CUSUM test (likelihood ratio type quantity)
* There are two criteria: Lorden and Pollak

There are robust versions of these (i.e. versions with minimax criteria)

CRICOS No.00213J
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When to use what technique?

The simplest approach that might work, sorted by SNR and before/after pdf knowledge.

From simplest to more powerful SNR (residue) w pdfs partially known Intractable models*

Fault detection (FD) > 6 dB (High) anything anything

Bayesian QCD (BQCD) 2to6dB  (Medium) FD FD FD

Intermittent Signal Detection (ISD) -10to 2 dB (Low) BQCD Robust BQCD open problem

Non-Bayesian QCD (NBQCD) <-10dB  (Very low) NBQCD or ISD Robust NBQCD or ISD open problem
Note:

SNR (residue) means the residue SNR after you in exploited all the known signal structure.

*Not clear now to use BQCD, ISD or NBQCD on intractable models. Some work done.

CRICOS No.00213J
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CEVCEEEN),
QCD as an
optimal

stopping
problem

The hire problem

« Bayesian Quickest Change
Detection is an optimal stopping
problem.

« Optimal stopping problems are an
important sub-class of optimal
control problems.

 |[n a general informal sense, their
solutions can be described by
discrete time dynamic programming
equations; which rarely have
closed-form solutions.
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Bayesian Quickest Change Detection

Here “Bayesian” refers to the model of change time event.

In the classic Bayesian version of the problem, we assume the change time v > 0 is a random
variable with geometric prior, m;, = (1 — p)*p, with p € (0, 1). Also assume, that at the change
time v the statistical distribution of a sequential observed process changes from

« i.i.d random variable with probability density b°(.) to
« i.i.d random variable with probability density b (.).

The P,(.) and E,[.] that follow are measures and expectation operations arising from assumed
geometry prior.
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Bayesian Quickest Change Detection

We are interested at designing a stopping rule T = 0. For a considered stopping rule 7, let us
define PFA (probability of false alarm) as

PFA(t) = P(t < V).

We are interested in designing a stopping rule t (declaring a change) that solves the optimization
problem

PF/}%%SOCE”[T —v|t > v].

That is, minimizing the average detection delay subject to a constraint on false alarm performance.
This problem can be re-written as unconstrained optimization of J(t) = cE.[(t — v)*]+ PFA(7),

where (t — v)* = max(t —v,0).
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Dynamic programming sketch

Importantly, we can equivalently write our BQCD solution as the stopping rule t that optimises the cost
J(t, X}) = Ex[cZi2o(1 — X3) + X211 X5]
where X} is the prior that no change has occurred at time 0, and X 2 P,(no change|y,, V1, .-, Vi)-
We can define the value function as, for X € [0,1],
V()?) = infT](T,)?).
In this case V(X) satisfies a variational inequality type discrete recursion Red =stop,
V(X) = min (c(l —X)+E [V ()?J“()? y)) ‘)?] )?) Green = continue

where X+(X y) is the 1 step ahead of the conditional pdf of the no change event given the
measurement y (i.e. one step ahead of the filter).

The value function encodes the optimal solution, but it is challenging to solve this recursion directly.

CRICOS No.00213J
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Solution: A threshold test

Remarkably, it can be shown that the optimal rule solving the BQCD problem can be written as a
simple threshold check on the no-change posterior X 2 P.(no changel|y,, y1, ..., Vx). Thatis, the

optimal rule is ~
T = inf{k : X < h}

where h Is selected to control PFA.

This X can be exactly computed using simple filter recursion as the observations arrive, and the
complicated DP equation avoided. The posterior filter is a simple 2 state HMM filter.

Optimal rule is a threshold test initially established by Shiryaev (1963), but an elegant modern treatment can be
found in V. Krishnamurphy, Partially observed Markov decision processes, Cambridge University Press, 2016.

CRICOS No.00213J
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Convenient recursion for no-change posterior

The no-change posterior can be written as the scalar recursion
X = N (1 = p)b* () X,
where normalization factor given by

Ngt =b*(yi) + (1 — p) (b (i) — b2 (i) Xie—1.-

Proof: Let 1st Markov chain state denote no change yet and 2" state denote change has
occurred. Build left-to-right transition matrix with p etc. elements, b°(.) etc. in observation

equation. Then X+ XZ=1 means simple algebra on the hidden Markov model filter recursions
leads to the above scalar recursion.

Helps make the posterior recursion look somewhat scalar and linear and open to analysis.

Jason J. Ford, Jasmin James, Timothy L. Molloy, On the informativeness of measurements in
Shiryaev’s Bayesian quickest change detection, Automatica, 2020.

CRICOS No.00213J
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Deep Drive Jenkins (1976) “All
models are wrong,
The role of model but some are

assumptions useful”




Empirical science’s basic
principle is that knowledge
should be extracted from
observations

One debate is the role of
prior knowledge and models
In this process
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My journey with model
error started in ‘98

What do your estimates mean when your
model is wrong?

— from my PhD Thesis, 1998.

This simple question has inspired much of
my career!

7.3 Future Research Directions

In this thesis several open questions have arisen about identification of hidden Markov models.

1. If the “true model in the model set” assumption is relaxed then what do our model
estimates mean? Will our estimates be maximum likelihood estimates? Can maximum
likelihood estimation on a set of HMMs of a particular model order be performed?
Consider estimation of an HMM of order N in the following situations:

(a) the data is generated by an HMM of an order different than N.
(b) the data is generated by a linear system.
(c) the data is generated by a non-linear system.

2. Is there a concept of a minimal representation? When will high-order HMMs be ‘well’

approximated by low-order HMMSs?

Ford, Jason (1998) Adaptive hidden Markov model estimation and applications.
PhD thesis, Australian National University.

CRICOS No.00213J
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Brief paper

Practical stability of approximating discrete-time filters with respect to
model mismatch”

Onvaree Techakesari®!, Jason J. Ford?, Dragan Ne3i¢"

n n 2 School of Ele al Engineering and Compute gnce, Queensland ersity of Technology, Brishane QLD 4001, Australia
u a I l tI y a I I d I I l a I l a g I I I g 6594 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

Asymptotic Minimax Robust Quickest Change

e rro r VI a I nfo rm atl O n Detection fpr Depender}t Stochast.ic Processes
th eO retl C tOOIS With Parametric Uncertainty

Timothy L. Molloy and Jason J. Ford

5730 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 21, NOVEMBER 1, 2017

Aim: investigate relative entropy (AKA Kullback o Misspecified and Asymptotically Minimax Robust
Leibler distance) to quantify model error. fypends Quickest Change Detection

we proj
Pollak,

Pqu ram Of resea rCh (201 1 -1 9) the par4 Timothy L. Molloy and Jason J. Ford

informa

uncertai 2\
asympt( 280 IEEE CONTROL SYSTEMS LETTERS, VOL. 1, NO. 2, OCTOBER 2017  //
\“\CSSJ‘ N
N

» Techakesari et al., Automatica 2011 (first progress Boeind

on my PhD question —thought | was done). =1 % Minimax Robust Quickest Change Detection

Shiryaey

* Then Molloy, et al. in the ™ minimax robust With Exponential Delay Penalties
q U | CkeSt Change d eteCtlon Se rleS Of | E E E ;:1 Timothy L. Molloy, Justin M. Kennedy, and Jason J. Ford
paperst appearing in ‘ ”
° I E E E Tra ns I F 20 1 6 ’ 2976 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 7, JULY 2019 \&& |
« |IEEE Trans SP 2017,
« |EEE CSL 2017. and Minimax Robust Quickest Change Detection in Systems and
IEEE T AC ’2 019 Signals With Unknown Transients
rans ’ Timothy L. Molloy *“ and Jason J. Ford
T CO n ta I n m u Ch Oth e r g OOd n eSS ( R E O n |y S m a I | pa rt) ' Abstract—We consider the problem of quickly detecting an un- The Lorden and Bayesian formulations of quickest change det
known change in a sequence of independent random variables with ., poipy recently been generalized to settings with gradual or tra
unknown transient (or time-varying) prechange and postchange . ... 1. e Bayesian setting, quickest change detection -




Gh(ey) | Ghlee) |Ghle11)|Ghlee) |Ghless)

What didn’t we know in 20187

Gp(e,) | Ghley) |Ghle,)|Ghles7)|Ghley,)

Gp(es) | Ghleg) |Ghl(ey3)|Ghless) | Ghless)

Since 2008 we had been using a physically
unrealistic motion model within our HMM
filter engine to make our vision-based (e Grle1o)|Gifess) | GrlezoGrless) 2 |a
aircraft detector work. 8->
Bad model but ergodic and detector worked. \

Was a hack! (BQCD involves a left-to-right We enumerate image pixel locations

Gp(ey) | Ghleg) |Ghl(e1a)|Ghle0) | Ghlesa)

H MM, SO nOt ergOdiC). G,(e) fori=1,2,..., N in a column-wise manner

. when considering the image frame as a 2D pixel grid
In 2019 we developed new ergodic QCD for The
our deteCtO I, better physical matCh, and transition probability matrix characterises the way
achieved better detection performance. the target moves between one Image frame and
Nice, but still didn’t have a mathematical Transitions that

would otherwise cross the image boundary will
“wrap-around” to the opposite image boundary

explanation why BQCD didn’t work!

Lai, Et al. Vision-Based Estimation of Airborne Target
Pseudobearing Rate using Hidden Markov Model Filters,
IEEE AES 2013.
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We now show the consequences of robust latching; 1.e.,
vanishing gradient.
Theorem 4: If the input w; is such that a system remains

What was Wrong With BQCD? :;b;lsgzl :;tf:hed on attractor X after time 0, then —g%{; — 0

Proof: See the Appendix.

, _ _ Bengio, Et al., Learning long-term dependencies with
* In '94-5 Bengio showed RNNs and left-to-right HMMs gradient descent, IEEE Trans NN. 1994

have difficulty temporal modelling because of vanishing
dependence in time!

Diffusion of Credit in Markovian Models

* Further, using HMMs Bengio showed more structure
allowed learning longer dependences.

Yoshua Bengio* Paolo Frasconi
Dept. I.R.O., Universi;éé de Montréal, Dipartimento di Sistemi e Infoximatica
4 : ) : Montreal, Qc, Canada H3C-3J7 Universita di Firenze, Italy
® We had Observed that BayeSIan QCD dldn t Work In IOW bengioy@IR0.UMontreal.CA paolo@mcculloch.ing.unifi.it

Abstract

SNR (Bayesian QCD involves left-to-right HMMs &).
° What IS the Inte rplay between IOW SN R and Ieft'to'”ght This paper studies the problem of diffusion in Markovian models,
such as hidden Markov models (HMM

SJ and how it makes very
m Od e I S? difficult the task of learning of long-term dependencies in sequences.
Using results from Markov chain theory, we show that the problem
of diffusion is reduced if the transition probabilities approach 0 or 1.
Under this condition, standard HMMs have very limited modeling
capabilities, but input/output HMMs can still perform interesting
computations.

Bengio, Et al., Diffusion of Credit in Markovian Models, NIPS, 1995.

CRICOS No.00213J
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Example: Gaussian models

Let us consider b (yy) and b%(yy) unit variance Gaussian with slightly different post change means

5 m=0.2? case . ‘ . ) 5. m=0.4 case
Change Change

4 - 4

3 3

4 I | | | I | I | | | 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 time, k
time, k

CRICOS No.00213J
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Example: Gaussian models

Consider p = 0.05. Simulation before the change
Red is case with Igost change mean shift of 0.2
informative) and

of 0.4 (expected case)

event.

not
lue |s case with post change m(ean shift

There Is a critical value m. below which the detector
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Below m. = 0.32 the behavior of X5,

changes becoming increasingly
convinced a change has occurred?

Can’t meaningfully set a detection
threshold h
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CRICOS No.00213J
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What is the mechanism here?

For some insight consider the case when bl(yy) = b%(yy) (no measurement
information). Here no change posterior recursion become exponential decay of

Xe=(1-p)
and hence the test statistic becomes increasing confident change has occurred
(even when no change).

Informally, this (1 — p)* mechanism is dominating X} and when b!(y) and b?(yy)
are not sufficiently different (the prior model is too strong to overcome).

Interestingly, there is a critical point where suddenly the measurements are strong
enough!
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Definition: a weak practical super-martingale

A super-martingale has the property E [Xk+1|Xk] < Xk (does not trend upwards). We introduced a
new super-martingale concept.

The no change posterior log(X3) is a weak practical super-martingale if for any arbitrarily small
6, > 0 there exists a hy > 0 such that if Xi < hg implies

P.(foralln = k, E;[log(X7.1)|log(XD)] < log(X7)) > 1 -6,

\

Y

Basically, to any level of probabilistic certainty, 1 — §,, there existed practical interval Xi < hg that
X trends down (in a weak sense).

Note: “weak” as holding with P, > 1 — §,,, “practical” as holding for any “5,, > 0 there exists a h; > 07, and “super-martingale” the green part.

CRICOS No.00213J
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A weak practical super-martingale when
an interval trap X;; < hg exists e
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Lemma: A no change posterior update bound

Writing the log of the recursion in X;; is useful A
log(Xje) = log My + log(Xjc_1)

where M, 2 N, (1 — p)b*(y,) as properties of M,let us start to access the behavior of X; via an
additive mechanism.

The following X+_, dependent bound on M, exists. For any § > 0, then is a hg > 0 such that for
any Xi_, < hs we have

Eq[log My |1XE_1] <log(1 — p) + D(b (y1)|b%(yK)) + &

Note: Relative entropy D(bl(yk)|b2 (v)) is a pseudo distance measure between densities and log(1 — p) < 0.

CRICOS No.00213J
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Recall:

Lemma proof sketch My 2 Ne(1 = p)b' ()

Lemma:_The following X._, dependent bound on M, exists. For any § > 0, then is a hs > 0 such that
for any Xi_, < hs we have

Er|log My |Xi_1] <log(1 — p) + D(b* (y1)|b?(yi)) + &
Proof sketch:

» We re-express log(N;) = —log(b?(yy)) + yx where y; can be monotonically bounded by Xi_;.

bl(yk))‘ )?,%_1] + & where & can be

» We can then re-express Ey[log My |X;_,;| = log(1 - p) + E, [108 (bz(y )
k

monotonically bounded by X;_,.
 We then show E,, [log (E:gki)‘ )?,%_1] is bounded by the relative entropy D(b!(y)|b?(yi))-
k

. ﬁslgere 8 is monotonically bounded by Xi_;, we can always find the hs > 0 s.t. the lemma result
olds.

CRICOS No.00213J
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Key Result: Theorem on Insufficiently informative
measurements

If b1(yy) and b?(yy) are insufficiently informative in the sense1

D(b' (y1)|b?(y1)) < log (m)
then log(X?) is a weak practical super-martingale as defined earlier.
Proof sketch:

» Previous lemma and the above condition, means if X1_; < hs then log(X) heads down in a
super-martingale looking sense (it remains to show if continues that direction at future steps).

« Atunneling argument can be used to allow application of a maximal inequality for positive super-
martingales. For any hg select, | pick an auxiliary positive super-martingale to tunnel.

* Then follows for any §,, > 0 there exists a hy > 0 such that an interval trap Xi < hg must exist
and the theorem claim holds.

CRICOS No.00213J
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Outline of proof (part 1)

Noting log(Xz) = log M + log(Xi_,), then taking E.[.|Xs_,] gives
En[log()?,%) |log()?,%_1)] = En[log M;, |log()?,%_1)] +log(Xi_,)

Then prewous lemma gives if D(bl(yk)|b2 (V) < log( 2 then for any § > 0, then is a hg > 0 such that for
any X1_, < hs we have that E,[log My |log(X2_,)]<0 and hence

E.[log(X¢) |log(Xi_1)] < log(Xi_1)

This looks somewhat like a super-martln%ale, once in Xi_, < hs we expect to tread downward. But is there is
chance of leaving X} < hs for some n >

CRICOS No.00213J
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Outline of proof (part 2) )

Xk

For any 6, > 0 you select there is a hs > 0 such that the posterior bound holds.
Select smaller internals hg and h,, where h,,, < hy < hg. Then define an auxiliary positive

super-martingale
7y = max (log (%) ) 0).

Using maximal inequality for positive super-martingales gives

En’ [Zk]
Er ({mfl;\f(z = 1Ogh6/h ) log hg/hm
After a few substitutions, we can obtain for complimented event set,

v hs/hm
P, ({max log(X}) < logh5> >1— T

It then follows, for any §,, > 0 we can then select h; and h,, so that Is/hm o 5, and
remain in X} < hs and the theorem claim holds. orm

posterior update bound
hs

hs

NG

v

If you reach the{fa,

< 1 — 6, probability of
escaping Xi < hs.
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. A=099,C=1,Q=0.1 and R;,=0.1.
| know Kalman filters. L mrmEmkas A el
Convince me of this sorcery! \ \ \
S TR o T e
. Imagi imple scal € R stable to th “,I]W [l | '(\
orngigr:,nfl a<81|fnapn?j Sscr;r?a?lrp?rrgfeessss\jc;rianc;j. aCois?dere 14“ W‘ r|'| l"{ﬂ“ *)f rﬁh J d’ IM\‘ "“W‘ MJ .H wmh ‘l“ Jf .{ wm w w \( w-
w.l.o.g. an output matrix C = 1. U n\ JJ\ Hl " A MH ‘ | k Ml{;w \ MLH“{
- Imagine a (mismatched) sequence of measurements o AN i o N
. having nonzero mean (W..0.g.) M = 1. |\ T e
» We will now imagine the Kalman filter estimates A R=10 1
X\ arising under difference assumed measurement
variances R. Informally, as R T, X¥;, — 0 (as the 4T R=100
Kalman gain K, — 0, measurements have less
impact and the A < 1 drives X;, — 0). 02r -1000 I
. Whilst the £, will still be influenced by y, (having — k=1000"
mean M > 0), but the £, will get closerto 0 as R 1 0 10 20 300 400 500 600 700 80 90 1000

(i.e. the influence of y, reduces as R 7).

Similar phenomenon if R = R, fixed and Q reduced
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| know Kalman filters. Convince me of this sorcery!

| let you select a small ball B (interval) at the
origin. Whatever B you select, | claim there will

be a critical R, such that for any R > R, then X, Y

can become trapped in B (in a probabilistic
sense).

The issue is not that the Kalman filter/HMM
filter loses optimality, but that measurements
are so weak (relative to the model) that |
wonder if we lose practical observability.

R. < 1000

B

{ N]

T

J

i

|

MH

Il
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QCD fixes and general thoughts

» Fixes for QCD. There are other QCD approaches that don’t suffer the same issues.
« Behaviour arises due to Bayesian non-ergodic change model.
* [Non-Bayesian] e.g. Pollak or Lorden’s criterion (well known CUSUM algorithm).
« [Ergodic Bayesian change model] e.g. Our quickest intermittent signal detection problem.

* General thoughts

* We would expect similar phenomenon to arise in more complex Bayesian QCD or filter
problems involving non-ergodic models with weak observations.

« But my Kalman filter example shows also artefacts present in ergodic models.
« Take away message: Be careful with models in low SNR situations.



Thank you.

Questions



