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Structure of the seminar

First 5 minutes of the talk:

I General problem and the previous contributions

The rest of the talk:

I Interior Point Differential Dynamic programming
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Motivation: Control problem

For a given system subject to constraints find a control law, that

1. guarantees performance,

2. satisfies constraints,

3. can be computed in real-time.

Modern approach: Model Predictive Control

Advantages of MPC

I Performance is related to the objective function,

I Explicit constraints handling,

I Closed-loop control (by iterative resolving).

Disadvantages of MPC

I Computationally expensive → need efficient optimisation algorithms

I Stability and recursive feasibility analysis is required.
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The MPC problem

Setup:

I Dynamical system x+ = f(x, u)

I State and input constraints c(x, u) ≤ 0

I Stage and terminal costs q(x, u) and p(x)

where f(x, u), c(x, u), c(x, u) and p(x) are twice continuously dif-
ferentiable (possibly nonlinear) functions

Research focus:
Solution of the FTOC problem
at real-time
Research directions:

1. Precompute the solution?

2. Optimise the problem’s
complexity?

3. Efficient optimisation
algorithms?

FTOC problem:

min
z,u

N−1∑
t=0

q(zt, ut) + p(zN )

s.t. z0 = x,

for t ∈ {0, . . . , N − 1} :
zt+1 = f(zt, ut),

c(zt, ut) ≤ 0.
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Previous work: Minimax Approximate EMPC

Consider convex MPC problem as a multi-parametric problem in x:

J?(x) =min
z,u

N−1∑
t=0

q(zt, ut) + p(zN )

s.t. z0 = x, zk+1 = Azt +But

c(zt, ut) ≤ 0, cf (zN ) ≤ 0← terminal constraints

Explicit MPC: compute the optimal control law u?(x) = Fjx+ hj
(where j is a region’s label)

Approximate Explicit MPC: approximate u?(x) with û(x) such that
stability and recursive feasibility properties are preserved

Proposed method: û(x) =
∑
λ?iu

?(xi) + minimax stability certificate,
where λ? = argmin

∑
λiJ

?(xi) s.t. barycentric interpolation conditions
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Minimax AEMPC: Numerical tests and comparisons
Here we generate random marginally stable systems for n = 2, 3, 4, 5, 6
with one constrained input u ∈ [−1, 1] and partition the set ‖x‖∞ ≤ 1.
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Minimax AEMPC: Practical implementation

0 5 10 15 20

0

0.1

0.2

Time, s

P
os

it
io

n
,

m

Experiment
Simulation

0 5 10 15 20
−4
−2
0
2
4
·10−2

Time, s

A
n

gl
e,

ra
d

Experiment
Simulation

Publication: Pavlov et. al. “Minimax strategy in
approximate model predictive control.” Automatica 111
(2020): 108649. https://youtu.be/233ZM8I6WBM

I In total ≈ 24k
hyper-cubes

I Linear programs
are solved at
100Hz on a
micro-controller.
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Previous work: MPC complexity minimisation

MPC without terminal constraints (i.e., p(x) ≡ 0)

J?(x) =min
x,u

N−1∑
t=0

q(zt, ut)
[
=: J(x,u)

]
s.t. z0 = x,

for t ∈ {0, . . . , N − 1} :
zt+1 = f(zt, ut),

c(zt, ut) ≤ 0.

Property: Provable closed-loop stability when N is sufficiently big

How to make the problem simpler to solve?

1. Choose an optimisation algorithm
2. MPC complexity = #iterations × per-iteration complexity
3. #iterations = iterations for a “suitable” suboptimal solution
4. min (MPC complexity)

subject to (stability and feasibility guarantees)
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Previous work: MPC complexity minimisation

Definition: a γ-suboptimal solution if J(x,u)−J?(x) ≤ γq(x, u0)
for γ ∈ [0, 1)
Certificate: Duality gap G(z,u, s;x) ≤ γq(x, u0) (s is a solution
to the dual problem)
Stability conditions: closed-loop stability and performance bound
under γ-suboptimality conditions

1− γ −
(γ + νN − 1)

∏N
i=2(νi − 1)∏N

i=2 νi −
∏N
i=2(νi − 1)

≥ αmin

Publications:

1. Pavlov et. al. “Early Termination of NMPC Interior Point Solvers: Relating the
Duality Gap to Stability.” 2019 18th European Control Conference (ECC), 2019.

2. Pavlov et. al. “Complexity minimisation of suboptimal MPC without terminal
constraints”, in the Proceedings of IFAC World Congress, Berlin, July 2020.

3. Pavlov et. al. “Algorithmic complexity minimisation of suboptimal MPC without
terminal conditions.” Journal version, in progress.
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Example: NMPC + interior-point methods
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Figure: Computational complexity (thin lines) and experimentally measured
computational efforts with its standard deviation (thick semi-transparent lines).
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Outline

1. Motivation
I Feedback laws
I Dynamical feasibility
I Inequality constraints

2. Contribution
I Roadmap
I DDP recursion
I Properties

3. Verification
I Practical implementation
I Numerical comparisons
I Conclusions
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Problem formulation

Develop an efficient method for solving the finite-time optimal con-
trol problem (FTOC):

min
z,u

N−1∑
t=0

q(zt, ut) + p(zN )

s.t. z0 = x,

for t ∈ {0, . . . , N − 1} :
zt+1 = f(zt, ut),

c(zt, ut) ≤ 0.

I Inequality constrained problem: Sequential quadratic programming (SQP),
Augmented Lagrangian (AL), Interior-Point (IP) methods, etc.

I Feasible (suboptimal) solutions: Condensed problem, Differential Dynamic
Programming (DDP) method

I Closed-loop control: Linear Quadratic Regulator (LQR), Model predictive
Control (MPC)

Research direction: combination of the methods and their properties
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Motivation: The optimal closed-loop control

Techniques behind the optimal closed-loop control:

I Model Predictive Control
Idea: Resolving the problem for each new state
Limitation: “Solving from scratch” is hard
Take-away: Need fast convergence for the real-time capabilities

I Bellman’s Optimality Principle

Idea: min
u0,...,uN−1

[
. . .
]
= min

u0

[
. . .+min

u1

[
. . .+min

u2
[. . .]

]]
Limitation: Analytical solution is rarely available (e.g., LQR)
Take-away: Compute locally optimal control law
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Motivation: Dynamically feasible solutions

Property: Feasible solutions can be checked for suboptimality
Issue: general-purpose optimisation methods satisfy zt+1 = f(zt, ut)
only in the limit

Solution #1: Propagate the dynamics for the obtained control solution
Disadvantage: Potential violation of the inequality constraints

Solution #2: Eliminate zt+1 = f(zt, ut) by substitution, i.e.,
minu0,...,uN−1 J(x0,u) – optimisation in control inputs only
Disadvantage: Dense Hessian – Newton method has O(N3) complexity

Solution #3: Stage-wise Newton method with O(N) complexity
Disadvantage: Hard to implement

Solution #4: Differential Dynamic Programming (DDP)
Disadvantage: Inequality constraints? ← let’s go for it

16 / 38



Motivation: SQP vs AL vs IP for constrained problem

Sequential quadratic programming method

I Idea: Use constrained quadratic models (QP) for solution updates

I Properties: Well-established and popular method, but significant
computational cost for each iteration

Penalty and Augmented Lagrangian methods

I Idea: Add “penalties” in the objective or Lagrangian functions,
solve the resulting unconstrained problem

I Properties: Sometimes useful, usually slower convergence

Interior-point method

I Idea: Perturb the KKT system and solve it for decaying perturbation

I Properties: Theoretically appealing and remarkably successful in
practice
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Roadmap: Optimisation algorithms
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Roadmap: Optimisation algorithms
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Three steps to the nested minimax problems

1. Apply Bellman’s principle of optimality to the FTOC problem

J?N (x0) =min
z,u

N−1∑
t=0

q(zt, ut) + p(zN )

s.t. constraints

2. Obtain the nested formulation of the OC problem

min
u0 s.t.

c(x0,u0)≤0

[
q(x0, u0) + min

u1 s.t.
c(f(x0,u0),u1)≤0

[
q(f(x0, u0), u1) + . . .

]]
3. Represent the above problem as the minimax problem

min
u0

max
s0≥0

[
`(x0, u0, s0) + min

u1
max
s1≥0

[
`(f(x0, u0), u1, s1) + . . .

]]
,

where `(x, u, s) = q(x, u) + sT c(x, u) ← stage-wise Lagrangian.
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The nested minimax problems
Consider the following recursion:

I min
u0

max
s0≥0

[
`(x0, u0, s0) + min

u1
max
s1≥0

[
`(f(x0, u0), u1, s1) + . . .

]]
︸ ︷︷ ︸

Solve?

I min
u0

max
s0≥0

[
`(x0, u0, s0) + min

u1
max
s1≥0

[
`(f(x0, u0), u1, s1) + . . .

]
︸ ︷︷ ︸

Approximate?

]

I min
u0

max
s0≥0

[
`(x0, u0, s0) + min

u1
max
s1≥0

[
`(f(x0, u0), u1, s1) + . . .

]
︸ ︷︷ ︸

Solve?

]
I ...

It’s a finite recursion with the terminal cost p(x) in the end:

min
u0

max
s0≥0

[
...+ min

uN−1

max
sN−1≥0

[
`(xN−1, uN−1, sN−1) + p(f(xN−1, uN−1))

]]
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Checkpoint: Overview

The idea behind any DDP method:

Start with an initial solution guess and repeat until convergence:

1. Backward pass: Resolve the recursion from (end) to (start)

2. Forward pass: Update the solution from (start) to (end)

Need to answer:

I How to resolve the recursion?

I How to update the solution?

I When (and why) the algorithm works?
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Backward pass: Ingredients
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Cost-to-go function ⇒ minimax problem

I Assume trajectory {xt, ut, st}N−1t=0 is given,

where xt+1 = f(xt, ut), c(xt, ut) ≤ 0 and st > 0.

I Consider quadratic models of the cost-to-go functions

V t(x) := V t
0 +

(
V t
x

)T
(x− xt)+

1

2
(x− xt)TV t

xx(x− xt)+ . . . ,

I Note that V N (x) ≡ p(x), thus

V N
0 = p(xN ), V

N
x = px(xN ) and V N

xx = pxx(xN ).

Problem at time t is

min
u

max
s≥0

[
`(x, u, s) + V t+1

(
f(x, u)

)︸ ︷︷ ︸
call it Q-function

]
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Minimax problem ⇒ local behaviour

I Replace min
u

max
s≥0

Qt(x, u, s)︸ ︷︷ ︸
exact problem
with Q-function

with min
δu

max
s+δs≥0

δQt(δx, δu, δs)︸ ︷︷ ︸
approximation

where δQt(δx, δu, δs) :=

QtxQtu
Qts

Tδxδu
δs

+
1

2

δxδu
δs

T Qtxx Qtxu Qtxs
Qtux Qtuu Qtus
Qtsx Qtsu Qtss

δxδu
δs


I Optimisation with respect to δu and δs yields

Qtu +Qtuxδx+Qtuuδu+Qtusδs = 0

(st + δs)� (Qts +Qtsxδx+Qtsuδu) = 0

Perturb the equations with µ > 0 and drop the second-order terms[
Qtuu Qtus
StQ

t
su Ct

] [
δu
δs

]
= −

[
Qtu

Stc(xt, ut) + µ

]
−
[
Qtux
StQsx

]
δx,

where Ct := diag[c(xt, ut)] and St := diag[st].
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Perturbation parameter µ

The “perturbed” parametric system for δu and δs[
Qtuu Qtus
StQ

t
su Ct

] [
δu
δs

]
= −

[
Qtu

Stc(xt, ut) + µ

]
−
[
Qtux
StQsx

]
δx,

Theoretical aspects of using µ

I Keeps solutions away from the feasible set boundaries (think of
log-barrier)

I Make problems “smoother” and easier to optimise (think of
homotopy)

Practical aspects of using µ

I Controls the convergence (by following the interior-point central
path)

I Allows for balance between optimality and algorithmic complexity
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Local behaviour ⇒ cost-to-go function

I Step t depends on step t+ 1, e.g.,

Qtx = `x + fTx V
t+1
x

Qtxu = `xu + fTx V
t+1
xx fu + V t+1

x · fxu

I Can solve for (δu, δs) at step t:[
δu
δs

]
=

[
αt
ηt

]
+

[
βt
θt

]
δx

The cost-to-go model at time t is well-defined (given info from t+ 1)

V t
x = Q̂tx + Q̂txuαt

V t
xx = Q̂txx + Q̂txuβt

27 / 38



Forward pass: updating the solution guess
1. Define the update functions

φt(x) := ut + αt + βt(x− xt),
ψt(x) := st + ηt + θt(x− xt),

2. Denote a new solution guess by

x+ = (x+0 , . . . , x
+
N )

u+ = (u+0 , . . . , u
+
N−1)

s+ = (s+0 , . . . , s
+
N−1)

3. Initialise x+0 = x0 and compute for t = 0, . . . , N − 1:

u+t = φt(x
+
t ),

s+t = ψt(x
+
t ),

x+t+1 = f(x+t , u
+
t )

28 / 38



When and why IPDDP works

Assume

1. Strict primal-dual feasibility, i.e., c(xt, ut) < 0 and st > 0

2. Matrices Q̂tuu (related to Qtuu) are positive definite

Then

1. Stationary points of IPDDP ⇐⇒ perturbed KKT points

2. IPDDP has a local quadratic convergence rate

Moreover

I Global convergence with line-search, regularisation and step filter

I Convergence to the locally optimal solutions1

I Constrained feedback control laws

I Can handle primal infeasible guess? Yes! (after modification)

1under regularity and 2nd order sufficient optimality conditions
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Infeasible IPDDP

Backward pass:

1. Introduce slack variables: c(xt, ut) + yt = 0, where yt ≥ 0

2. New parametric system of equationsQtuu Qtus 0
Qtsu 0 I
0 Yt St

δuδs
δy

 = −

 Qtu
c(xt, ut) + yt
Styt − µ

−
QtuxQtsx

0

 δx

Forward pass: slack updates y+t = yt + χt + ζt(x− xt).
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Checkpoint: Results overview

Feasible IPDDP

I Primal-dual feasibility:
c(xt, uy) < 0 and st > 0

I Stationary points ⇔ Pertb.
KKT points

I Local quadratic convergence
if Q̂tuu � 0

Infeasible IPDDP

I Dual feasibility:
st > 0 and yt > 0

I Stationary points ⇔ Pertb.
KKT points

I Local quadratic convergence
if Q̂tuu � 0

Practical implementation:

1. Regularisation: use Q̂uu + σI when Q̂uu 6� 0

2. Line-search with a step-size γ ∈ (0; 1]:

u+t = ut + γαt + βt(x− xt),
s+t = st + γηt + θt(x− xt), etc

3. Step filter: strict reduction of the optimality error
4. Perturbation: start with µ > 0 and reduce it in the process
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Advantages of IPDDP: Perturbation ⇒ smoothness
Inverted pendulum problem:

f(x, u) =

[
ϕ+ hω

ω + h sin(ϕ) + h

]
subject to − 0.25 ≤ u ≤ 0.25

Solutions to the perturbed problem:

0 50 100 150 200 250 300 350 400 450 500

−0.2

0

0.2

µ = 0.1 µ = 0.004
µ = 0.02 Optimal

Figure: Control inputs ut on y-axis vs time-index t on x-axis
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Advantages of IPDDP: Numerical comparisons
Inverted pendulum problem:
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(d) SQP-type DDP

Figure: log[J(x,u)− J(x?,u?)] on y-axis vs iteration number on x-axis
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Advantages of IPDDP: IP Central path-following
Car-parking problem:

f(x, u) =


rx + b(v, w) cos(ϕ)
ry + b(v, w) sin(ϕ)

ϕ+ sin−1
(
hv
d
sin(w)

)
v + ha

 subject to −
[
0.5
2

]
≤
[
w
a

]
≤
[
0.5
2

]
,

where b(v, w) = d+ hv cos(ω)−
√
d2 − h2v2 sin2(w)

Perturbation strategy: µ← min(µ/κ, µ1.2)
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(b) 0.0006 ≤ µ ≤ 0.0010

Figure: The maximum accepted stepsize on y-axis vs reduction factor κ on x-axis
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Advantages of IPDDP: Numerical comparisons
Car-parking problem:
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Figure: log[J(x,u)− J(x?,u?)] on y-axis vs iteration number on x-axis
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Advantages of IPDDP: Infeasible guesses
Unicycle motion problem:

f(x, u) =

rx + hv cos(ϕ)
ry + hv sin(ϕ)

ϕ+ hu


subject to the input and state constraints

−1.5 ≤ u ≤ 1.5, −1 ≤ ry ≤ 1, ‖rx + 5.5, ry + 1‖2 ≥ 1,

‖[rx + 8, ry − 0.2]‖2 ≥ 0.52, ‖[rx + 2.5, ry − 1]‖2 ≥ 1.52.

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
−1

0

1

rx

r y
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Advantages of IPDDP: Numerical comparisons

Unicycle motion problem:

0 20 40 60 80
10−7

10−4

10−1

(a) Infeasible-IPDDP

0 20 40 60 80
10−7

10−4

10−1

(b) Relaxed* log-barrier DDP

Figure: Unicycle motion control: optimality error on y-axis vs iteration number
on x-axis.

∗βδ(z) =

− log z z > δ,

1
2

[(
z−2δ
δ

)2
− 1
]
− log δ z ≤ δ,
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Conclusions and future work
Properties of IPDDP:

1. Locally (sub)optimal solutions

2. Local quadratic convergence (super-linear in practice)

3. Linear complexity in N

4. Dynamical feasibility

5. Comparable (or better) numerical performance

6. Infeasible solution guesses

7. Constrained feedback control laws (reinforcement learning?)

Further reaseach:

I Predictor-corrector steps

I Adaptive perturbation strategy

I Bilevel programs - optimisation problems with extra optimisation
problems as constraints (aka MPEC)

I Optimisation on manifolds

Preprint: arXiv:2004.12710
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