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Introduction

■ Developments in quantum technology and quantum information provide an important

motivation for research in the area of quantum control systems.

■ One of the most significant areas of long term opportunity in quantum technology is

that of quantum computing.

Superconducting quantum computing experiment
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■ Companies such as Google, IBM, and Microsoft have made significant investments in

quantum computing to develop small scale quantum computers using microwave

frequency technologies involving arrays of superconducting Josephson junctions

operating at millikelvin temperatures.

■ Recently Google claimed to achieve “Quantum Supremacy” with their technology,

indicating that their quantum computer could solve a problem which was impossible to

solve with a classical computer, although other companies have disputed this claim.

■ Quantum amplifiers play a critical role in such quantum superconducting technologies

in that they are required to read out qubit states and transfer the information to the

classical world at room temperature.
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■ Another important area of quantum technology is quantum sensing.

■ One of the most significant achievements in the area of quantum sensing is the

detection of gravitational waves.

■ In this case, a quantum optics technology has been used and optical quantum

amplification is required to extract the extremely feint gravity wave signals.

Schematic of the LIGO gravity wave detection experiment
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■ It is well known in the physics literature that the laws of quantum mechanics place

fundamental limits on quantum amplifiers in terms of the amount of noise which is

added by the amplifier to a signal in order to achieve a given level of amplification.

■ We will re-derive those limits using quantum linear systems theory and investigate

problems of designing optimal quantum amplifiers.

■ We will first consider phase-insensitive quantum amplifiers which provide amplification

while maintaining the coherent structure of the quantum signal.

■ We then consider non-reciprocal phase-insensitive quantum amplifiers which have the

additional property that they eliminate quantum back-action from the amplifier to the

quantum system being measured.
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Quantum Linear Systems

■ Quantum linear systems are a class quantum system models in the Heisenberg

Picture of quantum mechanics which describes the time evolution of operators

representing system variables such as position and momentum.

■ This is as opposed to the Schrödinger picture which describes quantum systems in

terms of the time evolution of the quantum state.

Werner Heisenberg
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■ We formulate a class of linear quantum system models described by quantum

stochastic differential equations (QSDEs) derived from the quantum harmonic

oscillator.

■ We begin by considering a collection of n independent quantum harmonic oscillators

which are defined on a Hilbert space H .

■ Corresponding to this is a vector of annihilation operators a:

a =











a1
a2
.
.
.

an











.

■ Each annihilation operator ai is an unbounded linear operator on H .
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■ The adjoint of the operator ai is denoted a∗i and is referred to as a creation operator.

We use a# to denote the vector of a∗i s:

a# =











a∗1
a∗2
.
.
.

a∗n











.

■ Physically, these operators correspond to the annihilation and creation of a photon

respectively.

■ Also, we use the notation aT =
[

a1 a2 . . . an
]

, and

a† =
(

a#
)T

=
[

a∗1 a∗2 . . . a∗n
]

.

■ Matrices of the form

[

R1 R2

R
#
2 R

#
1

]

are denoted by ∆(R1, R2).

■ Also, J :=

[

I 0
0 −I

]

.
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■ We consider a class of linear quantum systems described by the QSDEs:

[

da(t)
da(t)#

]

= A

[

a(t)
a(t)#

]

dt+B

[

du(t)
du(t)#

]

;

[

dy(t)
dy(t)#

]

= C

[

a(t)
a(t)#

]

dt+D

[

du(t)
du(t)#

]

,

where

A = ∆(A1, A2), B = ∆(B1, B2),

C = ∆(C1, C2), D = ∆(D1, D2).

■ Here, a(t) = [a1(t) · · · an(t)]
T

is a vector of annihilation operators corresponding to

each quantum harmonic oscillator in the system, the vector u represents the input

signals and the vector y represents the output signals.
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Definition 1 A complex linear quantum system of the above form is said to be physically

realizable if there exists a complex Hamiltonian matrix M = M†, a coupling matrix N
and a unitary scattering matrix S such that M and N are of the form M = ∆(M1,M2),
N = ∆(N1, N2) and

A = −ıJM −
1

2
JN†JN ;

B = −JN†J ;

C = N ;

D =

[

S 0
0 S#

]

.

■ The square complex transfer function matrix corresponding to the above system is

given by

G(s) = C(sI −A)−1B +D.
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Definition 2 A complex transfer function matrix G(s) is said to be physically realizable if

it is the transfer function of a physically realizable linear quantum system.

Theorem 1 A square complex transfer function matrix G(s) is physically realizable if and

only if

G∼(s)JG(s) = J

for all s ∈ C and the matrix G(∞) is of the form G(∞) =

[

S 0
0 S#

]

where S†S =

SS† = I . Here, G∼(s) = G(−s∗)†.

■ A physically realizable transfer function matrix corresponds to a linear quantum system

which satisfies the laws of quantum mechanics and can be implemented using physical

components such as arising in quantum optics or quantum superconducting circuits.
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Phase-Insensitive Quantum Amplifier

■ In quantum optics, all signals have two components or quadratures. In amplifying a

quantum signal, it is usually a requirement that both quadratures of the signal be

amplified equally.

■ An amplifier having this property is called a phase-insensitive quantum amplifier.

■ We present a systems theory approach to the proof of a result bounding the required

level of added quantum noise in a phase-insensitive quantum amplifier.

■ We also present a synthesis procedure for constructing a quantum optical

phase-insensitive quantum amplifier which adds the minimum level of quantum noise

and achieves a required gain and bandwidth.

■ This synthesis procedure is based on a singularly perturbed quantum system and

leads to an amplifier involving two squeezers and two beamsplitters in the optical case.

STAE Onlinear Seminar June 2020 ANU
CANBERRA



Quantum Amplifiers 13

■ A phase-insensitive quantum amplifier is a two-input two-output physically realizable

quantum linear system with transfer function Ḡ(s) as illustrated below:

G(s)
_

s

w

s

w

out

out

signal

noise

in

in

■ In this diagram, the first input channel and the first output channel are the signal input

and output channels respectively.

■ Also, the second input channel and the second output channel are noise input and

output channels.
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■ The noise output channel is not used in the operation of the amplifier but is included for

consistency with the physical realizability theory for quantum linear systems.

■ As with any quantum linear system, each input and output channel consists of two

quadratures.

■ Hence, the transfer function matrix Ḡ(s) is a four-by-four transfer function matrix.

■ In order to define a phase-insensitive quantum amplifier, a physically realizable transfer

function matrix Ḡ(s) should satisfy certain gain and phase-insensitivity properties over

a specified frequency range.
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■ We write the transfer function Ḡ(s) in “doubled-up” form, specifying both quadratures

of each input and output channels as follows:









sout

wout

sout∗

wout∗









= Ḡ









sin

win

sin∗

win∗









=

[

G H

H# G#

]









sin

win

sin∗

win∗









.

■ Furthermore, we write

G =

[

g11 g12
g21 g22

]

, H =

[

h11 h12

h21 h22

]

.
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Definition 3 A physically realizable transfer function matrix Ḡ(s) of the form above is said

to be phase-insensitive at frequency ω if

h11(jω) = 0.

Definition 4 A physically realizable transfer function matrix Ḡ(s) of the form above is said

to have complex gain g at frequency ω if

g11(jω) = g.

■ We will be mostly concerned with the phase-insensitive property at DC and hence, we

will usually drop the frequency specification.

■ Also, we will be concerned with the noise squared amplitude

g12(jω)
∗g12(jω) + h12(jω)

∗h12(jω)

at a given frequency ω (usually DC).
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Main Results

Theorem 2 At any frequency ω, given a desired phase-insensitive quantum amplifier gain

at that frequency g, then the minimum possible value of the noise squared amplitude is

min [g∗12g12 + h∗
12h12] = g∗g − 1.

Here the minimum is taken over all transfer function matrices Ḡ(s) satisfying the physical

realizability condition, the phase-insensitivity condition and with the given amplifier gain g.

Furthermore, this minimum is achieved by a transfer function matrix defined by

g12 = 0; g21 =

√

g∗g − 1

g∗g
; g22 =

√

1 + g∗g;

h11 = 0;h12 =
1

g∗

√

g∗g (g∗g − 1);

h21 =

√

g∗g − 1

g∗g
;h22 = 1.

However, this minimum is not unique.
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■ To apply this theorem, we use the following result which is known as the Shale

decomposition.

Lemma 1 Consider a 4 × 4 complex matrix Ḡ of the form above satisfying the physical

realizability condition. Then there exists a real diagonal matrix R =

[

r1 0
0 r2

]

and 2 × 2

unitary matrices S1 and S2 such that

Ḡ =

[

S1 0

0 S
#
1

] [

− cosh(R) − sinh(R)
− sinh(R) − cosh(R)

] [

S2 0

0 S
#
2

]

.

■ This lemma shows that the problem of physically realizing the two channel DC gain

transfer function matrix Ḡ can be reduced to the problem of physically realizing each of

the single channel transfer function matrices Ḡ1 =

[

− cosh(r1) − sinh(r1)
− sinh(r1) − cosh(r1)

]

,

and Ḡ2 =

[

− cosh(r2) − sinh(r2)
− sinh(r2) − cosh(r2)

]

.
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■ Then, the unitary transfer matrices

[

S1 0

0 S
#
1

]

, and

[

S2 0

0 S
#
2

]

can be physically

implemented using beamsplitters. Indeed, since S1 and S2 are both 2× 2 matrices, it

follows that each of these can be implemented by a single beamsplitter.

■ For example, we can write the input-output relations of a beamsplitter in the form

[

y1
y2

]

= R

[

u1

u2

]

where R is a unitary matrix of the form

R =

[

ejφ1 sin(θ) ej(φ1+φ3) cos(θ)

ejφ2 cos(θ) −ej(φ2+φ3) sin(θ)

]

and φ1, φ2, φ3 and θ are parameters of the beamsplitter.

■ Furthermore, it is straightforward to verify that any 2× 2 unitary matrix S can be

represented as a matrix of this form.

STAE Onlinear Seminar June 2020 ANU
CANBERRA



Quantum Amplifiers 20

■ To realize a single channel DC transfer function matrix

Ḡr =

[

− cosh(r) − sinh(r)
− sinh(r) − cosh(r)

]

,

we consider a single channel dynamic squeezer.

■ An optical cavity consists of a number of mirrors, one of which is partially reflective. If

we include a nonlinear optical element inside such a cavity, an optical squeezer can be

obtained. By using suitable linearizations and approximations, such an optical

squeezer can be described by a quantum stochastic differential equation as follows:

da = −
κ

2
adt− χa∗dt−

√
κdu;

dy =
√
κadt+ du,

where κ > 0, χ is a complex number associated with the strength of the nonlinear

effect and a is a single annihilation operator associated with the cavity mode.
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■ This leads to a linear quantum system as follows:

[

da(t)
da(t)∗

]

=

[

−κ
2 −χ

−χ∗ −κ
2

] [

a(t)
a(t)∗

]

dt−
√
κ

[

du

du∗

]

;

[

dy

dy∗

]

=
√
κ

[

a(t)
a(t)∗

]

dt+

[

du

du∗

]

.

■ Note that it is straightforward to verify that this system is stable if and only if

κ2 > 4χχ∗.
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■ A diagram of a dynamic optical squeezer is shown below:
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■ Now, we choose the parameters κ and χ to be of the form κ = ǫκ̄ and χ = ǫχ̄,

where κ̄ > 0, χ̄ is chosen to be real and ǫ > 0 is a parameter which will determine

the amplifier bandwidth.

■ Introducing the change of variables

[

ã(t)
ã(t)∗

]

= ǫ−
1

2

[

a(t)
a(t)∗

]

, the above QSDEs

reduce to
[

dã(t)
dã(t)∗

]

=
1

ǫ

[

− κ̄
2 −χ̄

−χ̄ − κ̄
2

] [

ã(t)
ã(t)∗

]

dt

−

√
κ̄

ǫ

[

du

du∗

]

;

[

dy

dy∗

]

=
√
κ̄

[

ã(t)
ã(t)∗

]

dt+

[

du

du∗

]

.
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■ The transfer function matrix of this system at DC is given by

G(0) = I +

[

− 2κ̄2

κ̄2−4χ̄2

4κ̄χ̄
κ̄2−4χ̄2

4κ̄χ̄
κ̄2−4χ̄2 − 2κ̄2

κ̄2−4χ̄2

]

=

[

− 1+α2

1−α2

2α
1−α2

2α
1−α2 − 1+α2

1−α2

]

where α = 2χ̄
κ̄

= 2χ
κ

.

■ After some manipulation, we obtain the following result.

Lemma 2 Given any matrix Gr of the form above, there exists a physically realizable quan-

tum system corresponding to a stable single channel dynamic squeezer such that its transfer

function matrix G(s) satisfies

G(0) = Gr.

Here, the ratio α = 2χ̄
κ̄

satisfies α2 < 1 and the parameter ǫ > 0 can be chosen to

achieve any desired bandwidth.
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■ Using the above theorems and lemmas, we obtain the following theorem which is one

of our main results.

Theorem 3

■ Given any desired quantum phase-insensitive amplifier DC gain g, there exists a corre-

sponding physically realizable linear quantum system which achieves this DC gain and

introduces the minimal amount of DC quantum noise.

■ Furthermore, this transfer function matrix satisfies the DC phase-insensitivity condition.

■ In addition, the parameters in this linear quantum system can be chosen to achieve a

specified bandwidth over which the above conditions will hold approximately.

■ Finally, this system can be constructed from two beamsplitters and two stable dynamic

squeezers.
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Illustrative Example

■ We now apply the method of this paper to synthesise a phase-insensitive quantum

amplifier with a DC gain of g = 2 (6dB), a bandwidth of 2× 106 radians/s and with

the minimum added noise.

■ Indeed, with g = 2, our formulas give

G =

[

2 0√
3
2

√
5

]

; H =

[

0
√
3√

15
2 1

]

.

■ We then obtain

R =

[

1.6139 0
0 −1.1327

]

.

■ Also, we have

S1 =

[

0.5240 0.8517
0.8517 −0.5240

]

and

S2 =

[

−0.6840 −0.7295
−0.7295 0.6840

]

.
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■ These parameter values define the beamsplitters representing the matrices S1 and S2
respectively.

■ Also, the matrix R defines the parameters α1 = −0.6679 and α2 = 0.5127.

■ These parameters are then used to define the parameters for the two squeezers. First

we choose the parameter ǫ = 2π106 radians/s to achieve the specified bandwidth.

■ Then, we choose the parameters κ1 = 2π ∗ 106 radians/s,

χ1 = α1κ1

2 = −2.0983× 106 radians/s for the first squeezer, and the parameters

κ2 = 2π ∗ 106 radians/s, χ2 = α2κ2

2 = 1.6106× 106 radians/s for the second

squeezer.

■ The implementation of the phase-insensitive amplifier is as shown below.
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■ Proposed realization of the phase-insensitive quantum amplifier.
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■ We now calculate the transfer function matrix of this proposed phase-insensitive

quantum amplifier.

■ Let G̃1(s) be the transfer function of the first squeezer and let G̃2(s) be the transfer

function of the second squeezer.

■ Then the transfer function matrix of the overall phase-insensitive quantum amplifier

system is given by

Ḡ(s) =

[

S1 0

0 S
#
1

]









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









[

G̃1(s) 0

0 G̃2(s)

]









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









[

S2 0

0 S
#
2

]

.
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■ We construct this transfer function matrix for this example and then plot the magnitude

Bode plot of the (1, 1) block of Ḡ(s) as shown below.

■ This is the transfer function from the signal input to the signal output g(s).

■ This plot also shows the magnitude Bode plot of the (1, 4) block of Ḡ(s).

■ This is the transfer function h12(s) from the quadrature noise input to the signal output.

■ This plot shows that at DC, the amplifier gives 6 dB of gain but there is a noise signal

which is of a magnitude given by
√

g(0)2 − 1.
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Realization of a Phase-Insensitive Amplifier using
Microwave Circuits

■ A superconducting microwave equivalent of an optical squeezer can be constructed

using a Josephson junction as illustrated below.

■ A significant limitation in this case is that the input and output of the squeezer are

always coincident as forward and reflected waves in the transmission line.

■ This would force the optical equivalent of the phase-insensitive amplifier to have the

same beamsplitter used in both the forward and reflected directions.
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■ This is illustrated below in the optical case.
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■ In the microwave case, the corresponding amplifier structure is as follows.

Microwave beamsplitter

Signal

noise

■ This structure puts an extra restriction on the set of possible amplifier transfer function

matrices in that the orthogonal matrices in the Shale decomposition must be equal

S1 = S2.
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■ In recent work, we have found that it is possible to find a phase-insensitive quantum

amplifier transfer function matrix which satisfies this extra condition and still achieves

the minimum possible noise level of

min [g∗12g12 + h∗
12h12] = g∗g − 1.

■ This was done by using the following symmetric transfer function matrix Ḡ:

Ḡ =









g 0 0
√

g2 − 1

0 g
√

g2 − 1 0

0
√

g2 − 1 g 0
√

g2 − 1 0 0 g









.
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Non-Reciprocal Phase-Insensitive Quantum Amplifier

■ It is often important that a phase insensitive amplifier has the non-reciprocal property.

■ This means that when an optical signal is applied to the input port of the amplifier,

none of that signal emerges from the same port.

■ In the case of optical amplifiers which do not have the non-reciprocal property, the

reflected signal may damage the device which was generating the optical signal.

■ Similar issues arise in non-optical quantum technologies such as superconducting

microwave circuits. These problems can be addressed by introducing an isolator or a

circulator but such devices may be noisy and difficult to implement.

■ Hence, the problem of constructing a non-reciprocal phase-insensitive quantum

amplifiers has received growing attention.
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■ A non-reciprocal phase-insensitive quantum amplifier is a three-input three-output

physically realizable quantum linear system with transfer function Ḡ(s) as illustrated

below:

G(s)
_

s

w

s

w

out

out

signal

noise

in

in

w
in

1 1

2 2
wout

output

input

signal

■ In this diagram, the first input channel and the second output channel are the signal

input and output channels respectively.

■ Also, the other two input channels are noise input channels and the other two output

channels are noise output channels.

■ Note that unlike the case of a phase-insensitive quantum amplifier, it is straightforward

to verify that it not possible to achieve a non-reciprocal phase-insensitive quantum

amplifier with only a single noise channel on the input and output.
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■ The noise output channels are not used in the operation of the amplifier but are

included for consistency with the physical realizability theory for quantum linear

systems.

■ As with any quantum linear system, each input and output channel consists of two

quadratures.

■ Hence, the transfer function matrix Ḡ(s) is a six-by-six transfer function matrix.

■ In order to define a non-reciprocal phase-insensitive quantum amplifier, a physically

realizable transfer function matrix Ḡ(s) should satisfy certain gain, non-reciprocal and

phase-insensitivity properties over a specified frequency range.

■ These properties will be formally defined below.
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■ We write the transfer function Ḡ(s) in “doubled-up” form, specifying both quadratures

of each input and output channels as follows:

















sout

wout
1

wout
2

sout∗

wout∗
1

wout∗
2

















= Ḡ

















sin

win
1

win
2

sin∗

win∗
1

win∗
2

















=

[

G H

H# G#

]

















sin

win
1

win
2

sin∗

win∗
1

win∗
2

















.
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■ Furthermore, we write

G =

[

g11 g12
g21 G22

]

, H =

[

h11 h12

h21 H22

]

.

■ Here g11, h11 ∈ C; g12, h12 ∈ C
1×2; g21, h21 ∈ C

2×1; G22, H22 ∈ C
2×2.

■ This involves grouping the two noise inputs together along with the corresponding

outputs.

■ In this description, the variable sin represents the amplifier input signal and wout
1

represents the amplifier output signal.
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Definition 5 A physically realizable transfer function matrix Ḡ(s) of the form above is said

to be phase-insensitive at frequency ω if

[1 0]h21(jω) = 0.

Definition 6 A physically realizable transfer function matrix Ḡ(s) of the form above is said

to be non-reciprocal at frequency ω if

g11(jω) = 0, h11(jω) = 0.
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■ In addition, our non-reciprocal phase-insensitive quantum amplifier will be required to

have a specified complex gain g at frequency ω.

■ This is represented by the gain constraint

[1 0] g21(jω) = g.

■ We will be mostly concerned with the non-reciprocal and phase-insensitive properties

at DC and hence, we will usually drop the frequency specification.

■ Also, we will be concerned with the corresponding noise squared amplitude

N =
[

1 0
]

G22(jω)G22(jω)
†
[

1
0

]

+
[

1 0
]

H22(jω)H22(jω)
†
[

1
0

]

at a given frequency ω (usually DC).
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Main Results

Theorem 4 At any frequency ω, the transfer function matrix defined by

g11 = 0; g12 =
[

0 1
]

; g21 =

[

g

0

]

;G22 =

[

0 0
g 0

]

;

h11 = 0;h12 =
[

0 0
]

;h21 =

[

0
√

g2 − 1

]

;H22 =

[√

g2 − 1 0
0 0

]

;

satisfies the physical realizability condition and the conditions required for a non-reciprocal,

phase-insensitive quantum amplifier with real gain g > 1.

Moreover, the corresponding contribution of the noise inputs win
1 and win

2 to noise covari-

ance of the output signal wout
1 is given by

N = g2 − 1.

This is the minimal noise covariance for any non-reciprocal, phase-insensitive quantum am-

plifier with real gain g. Again this optimal amplifier is not unique.
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■ The proof of this theorem follows by straightforward substitution.

■ To apply this theorem, we use the following version of the Shale decomposition for

6× 6 complex matrices.

Lemma 3 Consider a 6 × 6 complex matrix Ḡ of the form above satisfying the physical

realizability condition. Then there exists a real diagonal matrix R =





r1 0 0
0 r2 0
0 0 r3



 and

3× 3 unitary matrices S1 and S2 such that

Ḡ =

[

S1 0

0 S
#
1

] [

− cosh(R) − sinh(R)
− sinh(R) − cosh(R)

] [

S2 0

0 S
#
2

]

.
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■ This lemma shows that the problem of physically realizing the three channel DC gain

transfer function matrix Ḡ can be reduced to the problem of physically realizing each of

the single channel transfer function matrices

Ḡ1 =

[

− cosh(r1) − sinh(r1)
− sinh(r1) − cosh(r1)

]

,

Ḡ2 =

[

− cosh(r2) − sinh(r2)
− sinh(r2) − cosh(r2)

]

,

Ḡ3 =

[

− cosh(r3) − sinh(r3)
− sinh(r3) − cosh(r3)

]

.

■ Then, the unitary transfer matrices

[

S1 0

0 S
#
1

]

, and

[

S2 0

0 S
#
2

]

can be physically

implemented using beamsplitters.

■ Indeed, it is straightforward show that any matrix of the form

[

S 0
0 S#

]

where S is a

3× 3 unitary matrix can be implemented using a network of three beamsplitters as

shown below.
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Beamsplitter implementation of a 3× 3 unitary matrix.
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■ Two such beamsplitter networks are combined with three squeezers to give the

following complete optical implementation of a non-reciprocal phase-insensitive

amplifier.
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■ Using the above theorems and lemmas, we obtain the following theorem.

Theorem 5

■ Given any desired quantum non-reciprocal phase-insensitive amplifier DC gain g > 1,

there exists a corresponding physically realizable linear quantum system which achieves

this DC gain and introduces the amount of DC quantum noise defined by N = g2 − 1.

■ This is the minimal amount of noise needed for a quantum phase-insensitive amplifier

with DC gain g > 1.

■ Furthermore, this transfer function matrix satisfies the DC phase-insensitivity condition

and the non-reciprocal condition.

■ In addition, the parameters in this linear quantum system can be chosen to achieve a

specified bandwidth over which the above conditions will hold approximately.

■ Finally, this system can be constructed from a collection of six beamsplitters and three

stable dynamic squeezers.
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Conclusions

■ We have used ideas from linear systems theory to design optimal quantum amplifiers.

■ The notion of physical realizability enables us to connect ideas from linear systems

theory to quantum problems.

■ In the case of phase-insensitive amplifiers, quantum mechanics imposes fundamental

limits on the amount of noise contributed by the amplifier and not the bandwidth.

■ However, in practice, the bandwidth will be limited by technical factors relating to the

type of physical implementation being used.

■ We showed how optimal phase insensitive amplifiers could be implemented in both the

optical case and in the superconducting microwave case.
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■ We also considered optimal non-reciprocal phase-insensitive amplifiers.

■ It was found that the optimal noise level in this case is the same as in the case of

optimal phase-insensitive amplifiers.

■ However, the proposed optimal non-reciprocal phase-insensitive amplifier is more

complicated than the proposed optimal phase-insensitive amplifier.

■ Also, an optical implementation of an optimal non-reciprocal phase-insensitive amplifier

was presented.

■ Although similar amplifiers to those presented here are known in the physics literature,

the systems theory approach provides a more systematic way of dealing with the

problem of optimal quantum amplifier design.
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